A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Palm, M.

Paper Title Page
MOPEA020 Overview of the MedAustron Design and Technology Choices 109
 
  • M. Benedikt, J. Gutleber, M. Palm, W. Pirkl
    CERN, Geneva
  • U. Dorda, A. Fabich
    EBG MedAustron, Wr. Neustadt
 
 

MedAustron is a synchrotron based accelerator facility for cancer treatment in Austria currently in the development phase. The design is based on the PIMMS study* and CNAO** synchrotron. In addition to the clinical application, the accelerator will also provide beams for nonclinical research in the fields of medical radiation physics, radiation biology and experimental physics with an extended proton energy range beyond medical requirements to 800 MeV. The differences to others medical accelerator-based facilities will be elaborated, specifically the used source technologies and configuration (starting up with protons (p) and carbon ions (C6+) allowing a later upgrade to ion species up to neon) and the online verification of all relevant beam parameters. The current project status is presented.


* PIMMS Proton-ion medical machine study, Bryant, Philip J (ed.) et al., CERN, 2000.
** CNAO, www.cnao.it

 
THPEB032 Design and Development of Kickers and Septa for MedAustron 3954
 
  • J. Borburgh, B. Balhan, M.J. Barnes, T. Fowler, M. Hourican, M. Palm, A. Prost, L. Sermeus, T. Stadlbauer
    CERN, Geneva
  • F. Hinterschuster
    TU Vienna, Wien
  • T. Kramer
    EBG MedAustron, Wr. Neustadt
 
 

The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and different types of ions for cancer therapy and research. Ten different types of bumpers, septa and kickers will be used in the low energy beam transfer line, the synchrotron and the high energy extraction lines. They are presently being designed in collaboration with CERN. Both 2D and 3D finite element simulations have been carried out to verify and optimize the field strength and homogeneity for each type of magnet and, where applicable, the transient field response. The detailed designs for the injection and dump bumpers, the magnetic septa and the fast chopper dipoles are presented. A novel design for the electrostatic septa is outlined.

 
WEPE078 The MERIT High-Power Target Experiment at the CERN PS 3527
 
  • K.T. McDonald
    PU, Princeton, New Jersey
  • J.R.J. Bennett
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • O. Caretta, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon
  • A.J. Carroll, V.B. Graves, P.T. Spampinato
    ORNL, Oak Ridge, Tennessee
  • I. Efthymiopoulos, F. Haug, J. Lettry, M. Palm, H. Pereira
    CERN, Geneva
  • A. Fabich
    EBG MedAustron, Wr. Neustadt
  • H.G. Kirk, H. Park, T. Tsang
    BNL, Upton, Long Island, New York
  • N.V. Mokhov, S.I. Striganov
    Fermilab, Batavia
  • P.H. Titus
    PPPL, Princeton, New Jersey
 
 

We report on the analysis of data collected in the MERIT experiment at CERN during the Fall of 2007. These results validate the concept of a free mercury jet inside a high-field solenoid magnet as a target for a pulsed proton beam of 4-MW power, as needed for a future Muon Collider and/or Neutrino Factory.