A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Padamsee, H.

Paper Title Page
WEPEC060 Beam Pipe HOM Absorber for 750 MHz RF Cavities 3028
 
  • M.L. Neubauer, A. Dudas, R. Sah
    Muons, Inc, Batavia
  • G.H. Hoffstaetter, M. Liepe, H. Padamsee, V. Shemeli
    CLASSE, Ithaca, New York
 
 

Superconducting RF (SRF) systems typically contain unwanted frequencies or higher order modes (HOM). For storage ring and linac applications, these higher modes must be damped by absorbing them in ferrite and other lossy ceramic materials. Typically, these absorbers are brazed to substrates that are strategically located, often in the drift tubes adjacent to the SRF cavity. These HOM loads must have broadband microwave loss characteristics and be robust both thermally and mechanically, but the ferrites and their attachments are weak under tensile and thermal stresses and tend to crack. Based on existing work on HOM loads for high current storage rings and for an ERL injector cryomodule, a HOM absorber with improved materials and design will be developed for high-gradient 750 MHz superconducting cavity systems for storage ring and linac radiation sources. This work will build on novel construction techniques to maintain the ferrite in mechanical compression without brazing. 750 MHz RF system designs will be numerically modeled to determine the optimum ferrite load required to meet broadband loss specifications.