A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Okamura, M.

Paper Title Page
MOPEA065 DPIS for Warm Dense Matter 226
 
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
  • K. Horioka
    TIT, Yokohama
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • M. Okamura
    BNL, Upton, Long Island, New York
 
 

Warm Dense Matter (WDM) is an challenging problem because WDM, which is beyond ideal plasma, is low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams (~ 0.3 MeV/amu) can be useful tool for WDM physics*, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linac directly without the beam transport line. The discussions of DPIS for WDM are presented.


* L. R. Grisham, Physics of Plasmas, 11, 5727 (2004).

 
MOPEC026 Status of the RHIC Head-on Beam-beam Compensation Project 513
 
  • W. Fischer, E.N. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R.F. Lambiase, Y. Luo, M. Mapes, W. Meng, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York
 
 

In polarized proton operation the luminosity of RHIC is limited by the head-on beam-beam effect, and methods that mitigate the effect will result in higher peak and average luminosities. Two electron lenses, one for each ring, are being constructed to partially compensate the head-on beam-beam effect in the two rings. An electron lens consists of a low energy electron beam that creates the same amplitude dependent transverse kick as the proton beam. We discuss design consideration, present the main parameters, and estimate the performance gains.

 
THPEC054 Angular Distribution of Laser Ablation Plasma 4179
 
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    RIKEN Nishina Center, Wako
 
 

In a laser ion source, a high power pulsed laser shot focused on a solid state target produces laser ablation plasma. This plasma has initial velocity towards the normal direction of the target and simultaneously expands three dimensionally. Since charge state distribution, velocity distribution and plasma temperature strongly depends on laser power density, power density is one of the important parameter to the angular distribution of plasma. Angular distribution of expanding plasma was measured by changing laser power density. Details of the experiment will be shown in the paper.

 
THPEC062 LIS in Low Power Density for RHIC-EBIS 4197
 
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
 
 

The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory is a new heavy ion pre-injector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. An important requirement for EBIS is an ion source capable of efficiently providing a variety of heavy ion species to many users within short period of time. In that respect, Laser Ion Source (LIS), which can supply many heavy ion species from solid targets, is a good candidate for RHIC-EBIS, however, LIS has an issue to be resolved. This is the requirement of limited current in low energy beam transport. LIS in the condition that laser power density is low, is expected to provide limited current with long pulse length. The discussions of the experimental results are presented.

 
THPEC076 Ion Generation via a Laser Ion Source with Hot Target 4232
 
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

The Laser Ion Source is an efficient method for generating heavy ions for acceleration. The output produces high current and high charge-state beams from almost any type of elemental species. Using the Laser Ion Source apparatus, we consider improving the efficiency of this method by heating the target prior to laser irradiation. Prior deposition of any thermal energy into the target could add with the energy being delivered by the pulsed laser to produce higher current beams. These beams could be composed of higher charge-state ions and/or an increased net number of ions. We investigate by using a retrofitted heater to heat the target to a variety of high temperatures and subsequently analyze the produced beam.

 
THPEC077 Confinement of Laser Plasma by Solenoidal Field for Laser Ion Source 4235
 
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

A laser ion source can provide high-current highly-charged ions with a simple structure. Previously we have demonstrated acceleration of >60 mA carbon and aluminum ion beams using a direct plasma injection scheme. However, it was not easy to control the ion pulse width. Especially to provide longer ion pulse, a plasma drift length which is the distance between laser target and extraction point, has to be extended and the plasma is diluted severely. We apply a solenoid field to prevent reduction of ion density at the extraction point. A solenoid field of a few hundred Gauss enhanced the ion density up to 40 times. We present these results, including details of the solenoidal field effects on the expanding laser plasma.

 
MOPEC052 KEK Digital Accelerator for Material and Biological Sciences 576
 
  • K. Takayama, T. Adachi, T. Arai, Y. Arakida, M. Hasimoto, T. Iwashita, E. Kadokura, M. Kawai, T. Kawakubo, K. Koyama, T. Kubo, T. Kubo, H. Nakanishi, K. Okamura, H. Someya, A. Takagi, M. Wake
    KEK, Ibaraki
  • T. Kikuchi, T. Yoshii
    Nagaoka University of Technology, Nagaoka, Niigata
  • K.W. Leo
    Sokendai, Ibaraki
  • K. Mochiki, T. Sano
    Tokyo City University, Tokyo
  • M. Okamura
    RBRC, Upton, Long Island, New York
  • K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
  • H. Tanaka
    Iwate university, Morioka, Iwate
 
 

A novel circular accelerator capable of accelerating any ions from an extremely low energy to relativistic energy is discussed. A digital accelerator (DA)* is based on the induction synchrotron concept, which had been demonstrated in 2006. All ions are captured and accelerated with pulse voltages generated by induction acceleration cell (IAC). The IAC is energized by the switching power supply, in which power solid-state conductors are employed as switching elements and their tuning on/off is maneuvered by gate signals digitally manipulated from the circulating signal of an ion beam. Acceleration synchronized with the revolution of the ion beam is always guaranteed. The concept is realized by renovating the KEK 500 MeV booster into the DA, introducing a laser ablation ion source. Ion energy of 85-140 MeV/au and intensity of 10+9 - 10+10 /sec are estimated and these ions will be delivered without any large-scale injector. Companion papers** will discuss more details of instruments of DA. Applications for innovative material sciences and life sciences will be briefly introduced as well as the outline of DA.


*K. Takayam, J. of Appl. Phys. 101 (2007) 063304.
**K.Takayama "Ion source and LEBT", T.Adachi "Injection and extraction system", T.Iwashita "Induction acceleration system" in this conference.