A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Noda, K.

Paper Title Page
MOPEA007 Fast Raster Scanning System for HIMAC New Treatment Facility 76
 
  • T. Furukawa, T. Inaniwa, Y. Iwata, K. Katagiri, K. Mizushima, K. Noda, S. Sato, T. Shirai, Y. Takei, E. Takeshita
    NIRS, Chiba-shi
 
 

Construction of new treatment facility as an extension of the existing HIMAC facility, in which all treatment room will be equipped with a 3D pencil beam scanning system, is in progress at NIRS. The challenge of this project is to realize treatment of a moving target by scanning irradiation, because pencil beam scanning is more sensitive to organ motions compared with the conventional broad-beam irradiation. To accomplish practical moving target irradiation, a prototype of the scanning irradiation system was constructed and installed into existing HIMAC physics experiment course. One of the most important features of the system to be tested is fast scanning toward moving target irradiation with a relatively large number of rescannings within an acceptable irradiation time. Commissioning of the prototype is successfully in progress cooperating with highly stabilized beam provided by the HIMAC accelerator complex. We will report the design of the system and the status of the beam study.

 
MOPEA008 Multiple-energy Operation with Quasi-DC Extension of Flattops at HIMAC 79
 
  • Y. Iwata, T. Furukawa, K. Mizushima, K. Noda, T. Shirai, E. Takada, E. Takeshita
    NIRS, Chiba-shi
  • T. Fujimoto, T. Kadowaki, Y. Sano, H. Uchiyama
    AEC, Chiba
 
 

Tumor therapy using energetic carbon ions, as provided by the HIMAC, has been performed since June 1994, and more than 5000 patients were treated until now. With the successful clinical results over more than ten years, we are constructing a new treatment facility. The new facility would have three treatment rooms; two of them have both horizontal and vertical fixed-irradiation-ports, and the other has a rotating-gantry-port. For all the ports, a scanning irradiation method is applied. The new facility is constructed in conjunction with the HIMAC, and heavy-ion beams will be provided by the HIMAC accelerators. To fulfill requirements for the scanning irradiation, we proposed multiple-energy operation with the quasi-DC extension of a flat top. With this operation, the beam energy can be successively varied within a single synchrotron-cycle, and therefore no energy degrader or the range shifter is required. The beam acceleration and extraction tests of the multiple-energy operation were successfully made. We will present the development of this operation as well as results of the beam acceleration tests.

 
MOPEB036 A HTS Scanning Magnet and AC Operation 352
 
  • K. Hatanaka, M. Fukuda, J. Nakagawa, T. Saito, T. Yorita
    RCNP, Osaka
  • T. Kawaguchi
    KT Science Ltd., Akashi
  • K. Noda
    NIRS, Chiba-shi
  • Y. Sakemi
    CYRIC, Sendai
 
 

A scanning magnet using high-temperature superconductor (HTS) wire was designed, fabricated, and tested for its suitability as beam scanner. After successful cooling tests, the magnet performance was studied using DC and AC currents. With DC current the magnet was successfully operated to generate designed field distributions and effective length. In AC mode, the magnet was operated at frequencies of 30-59 Hz and a temperature of 77 K as well as 10-20 Hz and 20K. The power loss dissipated in the coils was measured and compared with the model calculations. The observed loss per cycle was independent of the frequency and the scaling law of the excitation current was consistent with theoretical predictions for hysteretic losses in HTS wires.

 
MOPD102 Space Charge Analysis on the Multi-wire Proportional Chamber for the High Rate Incident Beams 942
 
  • K. Katagiri, T. Furukawa, K. Noda, E. Takeshita
    NIRS, Chiba-shi
 
 

For the beam profile diagnosis of heavy ion cancer therapy in HIMAC (Heavy Ion Medical Accelerator in Chiba), a MWPC (Multi-Wire Proportional Counter) detector is employed as a beam profile monitor. Due to the high rate beams (~ 108 pps), a gain reduction of output signals, which is caused by space charge effects, have been observed in the scanning beam experiments at HIMAC. In order to reduce the gain reduction by optimizing the parameters of MWPCs including anode radius, and distance between electrodes, a numerical calculation code was developed by employing two-dimensional fluid model. In order to understand the relations between the gain reduction and space charge distribution, the temporal evolution of the ion/electron distribution were calculated for several hundredμseconds, which is significantly longer than the time period required for ions to travel between the electrodes. The output signal was also evaluated by the current flux into the anode and compared with that obtained by the beam experiment at HIMAC. The dependence of the gain reduction on the MWPC parameters was analyzed from these calculation results.

 
MOPE014 Development of a Nondestructive Beam Profile Monitor using a Sheeted Nitrogen-molecular Beam 987
 
  • Y. Hashimoto, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken
  • T. Fujisawa
    AEC, Chiba
  • T. Morimoto
    Morimoto Engineering, Iruma, Saitama
  • T.M. Murakami, K. Noda
    NIRS, Chiba-shi
  • S. Muto
    KEK, Ibaraki
  • D. Ohsawa
    Kyoto University, Radioisotope Research Center, Kyoto-shi
 
 

A nondestructive beam profile monitor using a nitrogen-molecule gas-jet sheet has been developed for intense ion beams. The density of the gas-jet sheet corresponds to 1 x 10-3 Pa. A light emitted from nitrogen excited by an ion beam collision is measured with a high sensitive camera attached a radiation hard image intensifier. In tests, beam profiles of 6 MeV/u full-stripped oxygen beams whose peak current was 600 μA. were measured. This paper describes characteristics of the instruments and the beam test results.

 
TUOCRA01 New Treatment Research Facility Project at HIMAC 1324
 
  • K. Noda, S. Fukuda, T. Furukawa, T. Himukai, T. Inaniwa, Y. Iwata, N. Kanematsu, K. Katagiri, A. Kitagawa, S. Minohara, S. Mori, T.M. Murakami, M. Muramatsu, S. Sato, T. Shirai, E. Takada, Y. Takei, E. Takeshita
    NIRS, Chiba-shi
  • T. Fujimoto, Y. Sano
    AEC, Chiba
 
 

Based on more than ten years of experience of the carbon cancer therapy with HIMAC, we have proposed a new treatment facility for the further development of the therapy with HIMAC. This facility will consist of three treatment rooms: two rooms equipped with horizontal and vertical beam-delivery systems and one room with a rotating gantry. For the beam-delivery system of the new treatment facility, a 3D hybrid raster-scanning method with gated irradiation with patient's respiration has been proposed. A R&D study has been carried out toward the practical use of the proposed method. In the R&D study, we have improved the beam control of the size, the position and the time structure for the proposed scanning method with the irradiation gated with patient's respiration. Further, owing to the intensity upgrade of the HIMAC synchrotron, we can successfully extend the flattop duration, which can complete one fractional irradiation with one operation period. The building construction of the new treatment facility will be completed at March 2010 and treatment of 1st patient is scheduled at March 2011. We will report the recent progress on the new treatment facility project at HIMAC.

 

slides icon

Slides

 
WEPEB038 The Spill Feedback Control Unit for J-PARC Slow Extraction 2770
 
  • S. Onuma, K. Mochiki
    Tokyo City University, Tokyo
  • T. Adachi, A. Kiyomichi, R. Muto, H. Nakagawa, H. Someya, M. Tomizawa
    KEK, Ibaraki
  • T. Kimura
    Miyazaki University, Miyazaki
  • K. Noda
    NIRS, Chiba-shi
  • H. Sato
    Tsukuba University, Ibaraki
 
 

J-PARC is a new accelerator facility to produce MW-class high power proton beams. From the main ring (MR) high energy protons are extracted in a slow extracted mode for hadron experiments. The beam is required with as small ripple as possible to prevent pileup events in particle detectors or data acquisition systems. We took beam tests at HIMAC using a prototype signal processing unit. In these beam tests we had recognized the improvement of the extracted beam structure by using the feedback algorithm whose parameters were changed according to the beam characteristics. We have developed a new signal processing unit for the spill feedback control of J-PARC. The unit consists of three signal input ports (gate, spill intensity and residual beam intensity), three signal output ports (spill control magnets), two DSPs (power spectrum analysis and spill feedback control), dual port memories, FPGAs and a LAN interface (remote control with SUZAKU-EPICS). From October 2009, this unit is being used in the beam study of J-PARC MR to check the performance of digital filtering, phase-shift processing, servo feedback control, real-time power spectrum analysis and adoptive control.

 
WEPD055 Semi-nondestructive Monitoring System for High-energy Beam Transport Line at HIMAC 3218
 
  • E. Takeshita, T. Furukawa, T. Inaniwa, Y. Iwata, K. Noda, S. Sato, T. Shirai
    NIRS, Chiba-shi
 
 

The development of the screen monitor system (SCN) at the Heavy Ion Medical Accelerator in Chiba (HIMAC) comprises the surveillance of the carbon beam. In the three-dimensional scanning system for the carbon therapy, the beam qualities, i.e., position, size and intensity of the beam, play a significant role for the patient's treatment. Therefore, we designed a semi-nondestructive monitoring system located on the the high-energy beam transport line to monitor the beam qualities by using a thin fluorescent screen and a high-speed charge-coupled device. The beam position and profile were obtained from the light emitting distribution of the screen. The SCN was checked on the prototype scanning system at HIMAC and succeeded to monitor the beam real-time in steps of about 10 msec, corresponding to a 100 Hz sampling rate. The developments steps will focus toward a operation at HIMAC's new therapy facility extension, recently. In the conference, we would like to report on details of the automatic beam tuning before starting the treatment and the interlock system during therapy using the SCN.

 
THPEB008 Insensitive Method to Power Supply Ripple in Resonant Slow Extraction 3894
 
  • K. Mizushima, T. Furukawa, K. Noda, T. Shirai
    NIRS, Chiba-shi
 
 

The betatron tune fluctuation due to the current ripple of power supplies brings the beam spill ripple through the stable area variation in resonant slow extraction. The effect becomes dominant especially in the case of the low beam rate extraction. The RF-knockout slow extraction method is insensitive to the tune ripple compared to the ordinary one because it uses the diffusion with the transverse RF field. However, the ripple effect appears even in the beam spill extracted by it. The amount of the separatrix fluctuation due to the tune ripple depends on the difference between the bare and the resonant tune, and the sextupole magnetic strength. We measured the correlation between the beam spill and the tune ripple which was the artificially generated with low and high frequency components of 67 Hz and 1167 Hz near those of the real current ripple. We confirmed the reduction of the beam spill ripple by setting the tune away from the resonance while keeping the separatrix area. The comparison between the experimental results, the analytical calculation and the simulation will be reported.

 
THPEB022 Beam Spill Control for the J-PARC Slow Extraction 3933
 
  • A. Kiyomichi, T. Adachi, A. Akiyama, S. Murasugi, R. Muto, H. Nakagawa, J.-I. Odagiri, K. Okamura, H. Sato, Y. Sato, S. Sawada, H. Someya, K.H. Tanaka, M. Tomizawa, A. Toyoda
    KEK, Tsukuba
  • T. Kimura
    Miyazaki University, Miyazaki
  • K. Mochiki, S. Onuma
    Tokyo City University, Tokyo
  • K. Noda
    NIRS, Chiba-shi
 
 

The slow extraction beam from the J-PARC Main Ring (MR) to the Hadron Experimental Facility is used in various nuclear and particle physics experiments. A flat structure and low ripple noise are required for the spills of the slow extraction. The spill control system has been developed for the J-PARC slow extraction to make a flat structure and small ripple. It consists of the extraction quadrupole magnets and feedback device. The extraction magnets consist of two kinds of quadrupole magnets, EQ (Extraction Q-magnet) which make flat beam and RQ (Ripple Q-magnet) which reject the high frequent ripple noise. The feedback system, which is using Digital Signal Processor (DSP), makes a ramping pattern for EQ and RQ from spill beam monitor. The extraction magnets and feedback device were installed in September 2009, and spill feedback study were successfully started from the beam time in October 2009. Here we report the operation status of magnets and first study of beam commissioning with spill feedback.

 
THPEC066 Electron String Ion Source Applied for Formation of Primary Radioactive Carbon Ion Beams 4205
 
  • E. Syresin, D.E. Donets, E.D. Donets, E.E. Donets, V.V. Salnikov, V.B. Shutov
    JINR, Dubna, Moscow Region
  • T. Honma, M. Kanazawa, K. Noda
    NIRS, Chiba-shi
 
 

The 11C isotopes are produced in the nitrogen gas target irradiated by a proton beam. If the nitrogen target contains 5% of hydrogen, about 5·E12 methane molecules can be produced each 20 minutes. The separated methane is loaded into the ion source. The technique used for formation of radioactive carbon beams was developed and tested in the JINR electron string ion source (ESIS) Krion-2. The measured conversion efficiency of methane molecules to carbon ions is rather high; it corresponds to 17 % for C4+ ions. The experimentally obtained C4+ ion intensity in ESIS was about 2·E9 ppp. The new ESIS-5T is under construction in JINR now at project ion intensity of 6·E9 ppp. Accelerated 12C ion beams are effectively used for cancer treatment at HIMAC. The positron emission tomography is the most effective way of tumor diagnostics. The intensive radioactive 11C ion beam could allow both these advantages to be combined. It could be used both for cancer treatment and for on-line PET. Formation of a primary radioactive ion beam at an intensity on the tumor target of 1·E8 pps allows the cancer treatment by the scanning radiation method and on-line dose verification.