A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ndabashimiye, G.

Paper Title Page
WEPEB052 SPS Ecloud Instabilities - Analysis of Machine Studies and Implications for Ecloud Feedback 2806
 
  • J.D. Fox, A. Bullitt, T. Mastorides, G. Ndabashimiye, C.H. Rivetta, O. Turgut, D. Van Winkle
    SLAC, Menlo Park, California
  • J.M. Byrd, M.A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • R. De Maria
    BNL, Upton, Long Island, New York
  • W. Höfle, G. Rumolo
    CERN, Geneva
 
 

The SPS at high intensities exhibits transverse single-bunch instabilities with signatures consistent with an Ecloud driven instability. We present recent MD data from the SPS, details of the instrument technique and spectral analysis methods which help reveal complex vertical motion that develops within a subset of the injected bunch trains. The beam motion is detected via wide-band exponential taper striplines and delta-σ hybrids. The raw sum and difference data is sampled at 50 GHz with 1.8 GHz bandwidth. Sliding window FFT techniques and RMS motion techniques show the development of large vertical tune shifts on portions of the bunch of nearly 0.025 from the base tune of 0.185. Results are presented via spectrograms and rms bunch slice trajectories to illustrate development of the unstable beam and time scale of development along the injected bunch train. The study shows that the growing unstable motion occupies a very broad frequency band of 1.2 GHz. These measurements are compared to numerical simulation results, and the system parameter implications for an Ecloud feedback system are outlined.