A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Naito, F.

Paper Title Page
MOPEC066 Status of Mass Production of the ACS Cavity for the J-PARC Linac Energy Upgrade 618
 
  • H. Ao, K. Hirano, T. Morishita
    JAEA/LINAC, Ibaraki-ken
  • H. Asano, N. Ouchi, N. Tsubota
    JAEA/J-PARC, Tokai-mura
  • K. Hasegawa
    JAEA, Ibaraki-ken
  • F. Naito, K. Takata
    KEK, Ibaraki
  • V.V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The mass production of the ACS (Annular Coupled Structure) cavity started from March 2009 for the J-PARC Linac energy upgrade from 181 MeV to 400 MeV. This upgrade project requires 18 ACS accelerating modules and two debunchers additionally within three years. The construction schedule is so tight that we have to optimize the fabrication process. For example the geometrical beta is varied for each accelerating module, thus the several test cells were fabricated and for the all beta before the mass production to confirm the initial design and the frequency tuning procedure. This paper describes our approach for the mass production and the current status and results.

 
MOPEC067 Status of the J-PARC RFQ 621
 
  • K. Hasegawa, T. Kobayashi, Y. Kondo, T. Morishita, H. Oguri
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Hori, C. Kubota, H. Matsumoto, F. Naito, M. Yoshioka
    KEK, Ibaraki
 
 

The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a beam from the ion source to the DTL. The beam test of the linac was started in November 2006 and 181 MeV beam was successfully accelerated in January 2007. Since then, the linac has been delivered beams for commissioning of the linac itself, downstream accelerators and facilities. Trip rates of the RFQ, however, unexpectedly increased in Autumn 2008, and we have been suffering from this issue for user run operation since then. We tried to recover by tender conditioning, modification of RF control, improvement of vacuum properties and so on. By taking these measures, we manage to have 2 to 3 days continuous beam operation. In this report, we describe the status of the RFQ.

 
MOPD043 Thermal Characteristics of a New RFQ for J-PARC 780
 
  • Y. Kondo, K. Hasegawa, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Matsumoto, F. Naito
    KEK, Ibaraki
 
 

A new RFQ for the J-PARC linac is under construction for more stable operation. The requirement of this RFQ is almost same as the now-operating one; the resonant frequency is 324MHz, the injection energy is 50 keV, the extraction energy is 3 MeV, peak beam current is 30 mA, and RF duty is 1.5%. The resonant frequency tuning during operation will be done by adjusting the temperatures of the cooling waters. In this paper, thermal characteristics of this RFQ and control system of the cooling water temperature is described.

 
MOPD044 Fabrication of the New RFQ for the J-PARC Linac 783
 
  • T. Morishita, K. Hasegawa, Y. Kondo
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Baba, Y. Hori, H. Kawamata, H. Matsumoto, F. Naito, Y. Saito, M. Yoshioka
    KEK, Ibaraki
 
 

The J-PARC RFQ (length 3.1m, 4-vane type, 324 MHz) accelerates a negative hydrogen beam from 0.05MeV to 3MeV toward the following DTL. As the trip rates of the practically using RFQ increased in autumn 2008, we started the preparation of a new RFQ as a backup machine. The beam dynamics design of the new RFQ is the same as the current cavity, however, the engineering and RF designs are changed. The processes of the vane machining and the surface treatments have been carefully considered to reduce the discharge problem. The vacuum brazing technique has been chosen for vane integration. In this report, the detailed design will be described with the progress of the fabrication of the new RFQ.

 
TUPEA046 LLRF Controller Upgrade for the J-PARC 400 MeV LINAC 1434
 
  • Z. Fang, S. Anami, Y. Fukui, M. Kawamura, C. Kubota, S. Michizono, F. Naito, K. Nanmo, S. Yamaguchi
    KEK, Ibaraki
  • H. Asano, K. Hasegawa, T. Itou, T. Kobayashi, S. Shinozaki, N. Tsubota
    JAEA/J-PARC, Tokai-mura
  • E. Chishiro, H. Suzuki
    JAEA, Ibaraki-ken
 
 

The output energy of the J-PARC LINAC will be upgraded from 181 to 400 MeV in the next two years by adding high-beta acceleration sections. The upgrade of the FPGA-based digital LLRF controller for the 400 MeV LINAC will be presented in this paper. The new LLRF control system works for both the 324 MHz low-beta and 972 MHz high-beta sections. Many functions are added into the LLRF controller, such as 1) working for different RF frequencies, 2) gradually increasing the feedback gains in the feedback loop instead of fixed ones, 3) automatic chopped-beam compensation, 4) automatically switching the beam loading compensation in accordance with the different beam operation mode, 5) input rf-frequency tuning carried out by a FPGA to match the rf cavities during the rf start-up, 6) auto-tuning of the rf cavity tuner by detecting the phase curve of the rf cavity during the field decay instead of the phase difference between the cavity input and output signals.