A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mishra, C.S.

Paper Title Page
WEPEC009 Designing of 9 Cell Reduced Beta Elliptical Cavity for High Intensity Proton Linac 2908
 
  • A. Saini
    University of Delhi, Delhi
  • C.S. Mishra, K. Ranjan, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

A superconducting rf cavity is designed for acceleration of particles travelling at 81% the speed of light. The cavity will operate at 1.3 GHz & is to be used in SILC section of the proposed high intensity proton linac at Fermilab. At present cavity will serve to accelerate the particles for energy range 466 MeV to 1.2 GeV. The cavity will be shorter than 9 cell beta =1 cavity but nearly same ratio of surface magnetic field to surface electric field. Cell to cell coupling coefficient is also optimized to get the good field flatness. The cavity is studied for monopole modes and higher order modes. The shapes of end cells are optimized to avoid dangerous modes with keeping same field flatness & same operating frequency.

 
WEPEC010 Optimization of End Cells of Low Beta Cavity of Higher Energy Part of Project X 2911
 
  • A. Saini
    University of Delhi, Delhi
  • A. Lunin, C.S. Mishra, K. Ranjan, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

Eleven cell elliptical cavity is designed for acceleration of particles traveling at 81 % of the speed of light. It will operate at 1.3 GHz and will be used to accelerate the particles from 0.4 GeV to 1.2 GeV. The cavity is studied for higher order mode (HOM) and trapped modes. The shapes of end cells of cavity is optimized to increase the field amplitude in end cells so that coupling of trapped modes may increase with HOM coupler and they can be extracted easily but keeping the field flatness & operating frequency undisturbed.