A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Métral, E.

Paper Title Page
TUPD048 Amorphous Carbon Coatings for Mitigation of Electron Cloud in the CERN SPS 2033
 
  • C. Yin Vallgren, G. Arduini, J. Bauche, S. Calatroni, P. Chiggiato, K. Cornelis, P. Costa Pinto, E. Métral, G. Rumolo, E.N. Shaposhnikova, M. Taborelli, G. Vandoni
    CERN, Geneva
 
 

Amorphous carbon coatings with low secondary electron yield have been applied to the liners in the electron cloud monitors and to vacuum chambers of three dipole magnets in the SPS. The electron cloud is completely suppressed for LHC type beams in these monitors even after 3 months air venting and no performance deterioration is observed after more than one year of SPS operation. Upon variation of the magnetic field in the monitors the electron cloud current maintains its intensity down to weak fields of some 40 Gauss, where fast conditioning is observed. This is in agreement with dark traces observed on the RF shields between dipoles. The dynamic pressure rise has been used to monitor the behavior of the magnets. It is found to be about the same for coated and uncoated magnets, apart from a weak improvement in the carbon coated ones under conditions of intense electron cloud. Inspection of the coated magnet is foreseen in order to detect potential differences with respect to the coated monitors. Measurements of the stray fields outside the dipoles show that they are sufficiently strong to induce electron cloud in these regions.

 
TUPD049 Transverse Mode Coupling Instability Measurements at Transition Crossing in the CERN PS 2036
 
  • S. Aumon
    EPFL, Lausanne
  • S. Aumon, M. Delrieux, P. Freyermuth, S.S. Gilardoni, E. Métral, G. Rumolo, B. Salvant, R.R. Steerenberg
    CERN, Geneva
 
 

Transition crossing in the CERN PS is critical for the stability of high intensity beams, even with the use of a second order gamma jump scheme. The intense single bunch beam used for the neutron Time-of-Flight facility (n-ToF) needs a controlled longitudinal emittance blowup at flat bottom to prevent a fast single-bunch vertical instability from developing near transition. This instability is believed to be of Transverse Mode Coupling (TMCI) type. A series of measurements taken throughout 2008 and 2009 aim at using this TMCI observed on the ToF beam at transition, as a tool for estimating the transverse global impedance of the PS. For this purpose, we compare the measurement results with the predictions of the HEADTAIL code and find the matching parameters. This procedure also allows a better understanding of the different mechanisms involved and can suggest how to improve the gamma jump scheme for a possible intensity upgrade of the n-ToF beam.

 
TUPD050 Impedances of an Infinitely Long and Axisymmetric Multilayer Beam Pipe: Matrix Formalism and Multimode Analysis 2039
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

Using B. Zotter's formalism, we present here a novel, efficient and exact matrix method for the field matching determination of the electromagnetic field components created by an offset point charge travelling at any speed in an infinitely long circular multilayer beam pipe. This method improves by a factor of more than one hundred the computational time with three layers and allows the computation for more layers than three. We also generalize our analysis to any azimuthal mode and finally perform the summation on all such modes in the impedance formulae. In particular the exact multimode direct space-charge impedances (both longitudinal and transverse) are given, as well as the wall impedances to any order of precision.

 
TUPD051 Generalized Form Factors for the Beam Coupling Impedances in a Flat Chamber 2042
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

The exact formalism from B. Zotter to compute beam coupling impedances has been fully developed only in the case of an infinitely long circular beam pipe. For other two dimensional geometries, some form factors are known only in the ultrarelativistic case and under certain assumptions of conductivity and frequency of the pipe material. We present here a new and exact formalism to compute the beam coupling impedances in the case of a collimator-like geometry where the jaws are made of two infinite plates of any linear material. It is shown that the impedances can be computed theoretically without any assumptions on the beam speed, material conductivity or frequency range. The final formula involves coefficients in the form of integrals that can be calculated numerically. This way we obtain new generalized form factors between the circular and the flat chamber cases, which eventually reduce to the so-called Yokoya factors under certain conditions.

 
TUPD052 Electromagnetic Simulations of Simple Models of Ferrite Loaded Kickers 2045
 
  • C. Zannini, N. Mounet, E. Métral, G. Rumolo
    CERN, Geneva
  • B. Salvant, C. Zannini
    EPFL, Lausanne
 
 

The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

 
TUPD053 The Six Electromagnetic Field Components at Low Frequency in an Axisymmetric Infinitely Thick Single-Layer Resistive Beam Pipe 2048
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

In this study B. Zotter's formalism is applied to a circular infinitely long beam pipe made of a conductor of infinite thickness where an offset point-charge travels at any given speed. Simple formulae are found for the impedances and electromagnetic fields both at intermediate frequencies (recovering Chao's results) and in the low frequency regime where the usual classic thick wall impedance formula does not apply anymore due to the large skin depth compared to the pipe radius.

 
TUPD055 Quadrupolar Transverse Impedance of Simple Models of Kickers 2054
 
  • B. Salvant
    EPFL, Lausanne
  • N. Mounet, E. Métral, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva
 
 

The SPS kickers are major contributors to the SPS transverse beam coupling impedance. The current "flat chamber" impedance model for a kicker is obtained by applying form factors to the theoretical impedance of an axisymmetric ferrite beam pipe. This model was believed to be acceptable for the vertical dipolar impedance, as two-wire measurements on SPS kickers revealed a satisfactory agreement. However, one-wire measurements on PS kickers suggested that this model underestimates the kickers' transverse quadrupolar (detuning) impedance. The longitudinal and transverse dipolar impedances of another kicker model that accounts for the metallic plates on each side of the ferrite were derived in the past by H. Tsutsui. The same formalism is used in this paper to derive the quadrupolar impedance. These formulae were then successfully benchmarked to electromagnetic simulations. Finally, simulating the interaction of an SPS bunch with the improved kickers' model results in a positive horizontal tune shift, which is very close to the tune shift measured with the SPS beam.

 
TUPD056 Update of the SPS Impedance Model 2057
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, O.E. Berrig, F. Caspers, A. Grudiev, N. Mounet, E. Métral, G. Rumolo, B. Salvant, E.N. Shaposhnikova, C. Zannini
    CERN, Geneva
  • M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
 

The beam coupling impedance of the CERN SPS is expected to be one of the limitations to an intensity upgrade of the LHC complex. In order to be able to reduce the SPS impedance, its main contributors need to be identified. An impedance model for the SPS has been gathered from theoretical calculations, electromagnetic simulations and bench measurements of single SPS elements. The current model accounts for the longitudinal and transverse impedance of the kickers, the horizontal and vertical electrostatic beam position monitors, the RF cavities and the 6.7 km beam pipe. In order to assess the validity of this model, macroparticle simulations of a bunch interacting with this updated SPS impedance model are compared to measurements performed with the SPS beam.

 
TUOAMH01 First Cleaning with LHC Collimators 1237
 
  • D. Wollmann, O. Aberle, G. Arnau-Izquierdo, R.W. Assmann, J.-P. Bacher, V. Baglin, G. Bellodi, A. Bertarelli, A.P. Bouzoud, C. Bracco, R. Bruce, M. Brugger, S. Calatroni, F. Caspers, F. Cerutti, R. Chamizo, A. Cherif, E. Chiaveri, P. Chiggiato, A. Dallocchio, R. De Morais Amaral, B. Dehning, M. Donze, A. Ferrari, R. Folch, P. Francon, P. Gander, J.-M. Geisser, A. Grudiev, E.B. Holzer, D. Jacquet, J.B. Jeanneret, J.M. Jimenez, M. Jonker, J.M. Jowett, Y. Kadi, K. Kershaw, L. Lari, J. Lendaro, F. Loprete, R. Losito, M. Magistris, M. Malabaila, A. Marsili, A. Masi, S.J. Mathot, M. Mayer, C.C. Mitifiot, N. Mounet, E. Métral, A. Nordt, R. Perret, S. Perrollaz, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, A. Rossi, B. Salvant, M. Santana-Leitner, I. Sexton, P. Sievers, T. Tardy, M.A. Timmins, E. Tsoulou, E. Veyrunes, H. Vincke, V. Vlachoudis, V. Vuillemin, Th. Weiler, F. Zimmermann
    CERN, Geneva
  • I. Baishev, I.A. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
 
 

The LHC has two dedicated cleaning insertions: IR3 for momentum cleaning and IR7 for betatron cleaning. The collimation system has been specified and built with tight mechanical tolerances (e.g. jaw flatness ~ 40 μm) and is designed to achieve a high accuracy and reproducibility of the jaw positions. The practically achievable cleaning efficiency of the present Phase-I system depends on the precision of the jaw centering around the beam, the accuracy of the gap size and the jaw parallelism against the beam. The reproducibility and stability of the system is important to avoid the frequent repetition of beam based alignment which is currently a lengthy procedure. Within this paper we describe the method used for the beam based alignment of the LHC collimation system, its achieved accuracy and stability and its performance at 450GeV.

 

slides icon

Slides

 
THOBMH02 Results from the 2009 Beam Commissioning of the CERN Multi-turn Extraction 3619
 
  • M. Giovannozzi, E. Benedetto, A. Blas, T. Bohl, S. Cettour Cave, K. Cornelis, D.G. Cotte, H. Damerau, M. Delrieux, J. Fleuret, F. Follin, T. Fowler, P. Freyermuth, H. Genoud, S.S. Gilardoni, S. Hancock, O. Hans, Y. Le Borgne, D. Manglunki, E. Matli, G. Metral, E. Métral, M. Newman, L. Pereira, F.C. Peters, Y. Riva, F. Roncarolo, L. Sermeus, R.R. Steerenberg, B. Vandorpe, J. Wenninger
    CERN, Geneva
  • F. Franchi
    ESRF, Grenoble
 
 

Following the analysis of the results obtained during the first year of beam commissioning of the CERN multi-turn extraction, a number of changes have been introduced in the beam manipulations performed in the CERN Proton Synchrotron. This includes a different control of the linear chromaticity, the setting of the non-linear magnets used to split the beam, and the longitudinal structure in the PS. The results obtained during the 2009 run are presented and discussed in detail, including the beam performance in both the PS and the SPS, as well as the optics measurements in the transfer line between the two circular machines.

 

slides icon

Slides