A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Meseck, A.

Paper Title Page
TUPE005 FLASH II: a Seeded Future at FLASH 2152
 
  • B. Faatz, N. Baboi, V. Balandin, W. Decking, S. Düsterer, J. Feldhaus, N. Golubeva, T. Laarmann, T. Limberg, D. Nölle, E. Plönjes, H. Schlarb, S. Schreiber, F. Tavella, K.I. Tiedtke, R. Treusch
    DESY, Hamburg
  • J. Bahrdt, R. Follath, M. Gensch, K. Holldack, A. Meseck, R. Mitzner
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • M. Drescher, V. Miltchev, J. Roßbach
    Uni HH, Hamburg
 
 

FLASH has been a user facility since 2005, delivering radiation in the wavelength range between 7 and 47 nm using the SASE principle. In order to increase user beam time and improve the radiation properties delivered to users, a major extension of the user facility called FLASH II has been proposed by DESY in collaboration with the HZB, which is a seeded FEL over the parameter range of FLASH. As logical continuation, the HHG development program started with sFLASH, will result in direct seeding. Because in the foreseeable future there will probably not be HHG seed lasers available at high repetition rates down to wavelengths of 4 nm, a cascaded HGHG scheme will be used to produce short wavelengths. After a first design report, the project now enters its preparation phase until the decision for funding will be taken. During this time, the FLASH beam parameters after the present upgrade 2009/2010 will be characterized and the present design will be re-evaluated and adjusted. In addition, complete start-to-end simulations will complete the simulations which have been performed so far, including a complete design of the extraction area.

 
TUPE009 Status of sFLASH, the Seeding Experiment at FLASH 2161
 
  • H. Delsim-Hashemi, A. Azima, J. Bödewadt, F. Curbis, M. Drescher, Th. Maltezopoulos, V. Miltchev, M. Mittenzwey, J. Roßbach, J. Rönsch-Schulenburg, R. Tarkeshian, M. Wieland
    Uni HH, Hamburg
  • S. Bajt, K. Honkavaara, T. Laarmann, H. Schlarb
    DESY, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • S. Khan
    DELTA, Dortmund
  • A. Meseck
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

Recently, the free-electron laser in Hamburg (FLASH) at DESY has been upgraded considerably. Besides increasing the maximum energy to about 1.2 GeV and installation of a third harmonic rf cavity linearizing the longitudinal phase space distribution of the electron bunch, an FEL seeding experiment at wavelengths of about 35 nm has been installed. The goal is to establish direct FEL seeding employing coherent VUV pulses produced from a powerful drive laser by high-harmonic generation (HHG) in a gas cell. The project, called sFLASH, includes generation of the required HHG pulses, transporting it to the undulator entrance of a newly installed FEL-amplifier, controlling spatial, temporal and energy overlap with the electron bunches and setting up a pump-probe pilot experiment. Sophisticated diagnostics is installed to characterize both HHG and seeded FEL pulses, both in time and frequency domain. Compared to SASE-FEL pulses, almost perfect longitudinal coherence and improved synchronization possibilities for the user experiments are expected. In this paper the status of the experiment is presented.