A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Martin, D.W.

Paper Title Page
WEPEC073 A Cryogenic RF Material Testing Facility at SLAC 3049
 
  • J. Guo, D.W. Martin, S.G. Tantawi, C. Yoneda
    SLAC, Menlo Park, California
 
 

Superconducting RF is increasingly important for particle accelerators. A lot of effort has been made in the SRF material research recently, aiming to find the superconducting materials with better performance. We developed a testing system using a resonant cavity with high quality factor and an interchangeable wall for the testing of different materials. The system is capable for high power RF cryogenic test to find the critical magnetic field at different temperature. The facility can be also used on testing the low temperature properties of the normal conducting material. Different Cu, Nb and MgB2 samples have been tested. In this paper, we will present the most recent development of the system, along with a discussion on the recent testing results.

 
THPEB066 Test and Development of a 10 MW 1.3 GHz Sheet Beam Klystron for the ILC 4023
 
  • D.W. Sprehn, A.A. Haase, A. Jensen, E.N. Jongewaard, D.W. Martin
    SLAC, Menlo Park, California
 
 

The SLAC National Accelerator Laboratory Klystron Department is developing a 10 MW, 5 Hz, 1.6 ms, 1.3 GHz plug-compatible Sheet-Beam Klystron as a less expensive and more compact alternative to the ILC baseline Multiple-Beam Klystron. Earlier this year a beam tester was constructed and began test. Device fabrication issues have complicated the analysis of the data collected from an intercepting cup for making beam quality measurements of the 130 A, 40-to-1 aspect ratio beam. Since the goal of the beam tester is to confirm 3d beam simulations it was necessary to rebuild the device in order to mitigate unwanted effects due to imperfect focusing construction. Measurements are underway to verify the results of this latest incarnation. Measurement will then be made of the beam after transporting through a drift tube and magnetic focusing system. In the klystron design, a TE oscillation was discovered during long simulation runs of the entire device which has since prompted two design changes to eliminate the beam disruption. The general theory of operation, the design choices made, and results of testing of these various devices will be discussed.