A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Manikonda, S.L.

Paper Title Page
TUPD021 Method to Extract Transfer Maps in the Presence of Space Charge in Charged Particle Beams 1967
 
  • E.W. Nissen, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois
  • S.L. Manikonda
    ANL, Argonne
 
 

This research involves a method for combining the intricate diagnostic tools for calculating quantities of interest such as tunes, dispersion and resonances from the single particle map of the system, with an accurate approximation of space charge effects on the beam. The space charge calculation involves a novel method of potential integration which allows for rapid Taylor expansion around singularities. This will allow for an accurate computation of space charge induced tune shifts and resonances, as well as allowing for experimental setups to discriminate between space charge caused issues, and lattice caused issues. The code used was COSY Infinity 9.0 which uses Differential Algebras to determine numerical derivatives to arbitrary order, and Normal Form methods to extract information from the map. The effects of space charge are added to the map using Strang splitting. External confounding factors such as the earths magnetic field are also addressed.

 
THPD079 Optical Studies for the Super Separator Spectrometer S3 4464
 
  • D. Boutin, M. Authier, F. Dechery, O. Delferrière, A. Drouart, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Amthor, H. Savajols, M.-H. Stodel
    GANIL, Caen
  • S.L. Manikonda, J.A. Nolen
    ANL, Argonne
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper.


[1] A. Drouart et al., Nucl. Phys. A 834 (2010) 747c. [2] SPIRAL2, http://pro.ganil-spiral2.eu/spiral2