A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Makii, H.

Paper Title Page
THPEB011 Design and Test of 2-4MHz Sawtooth-wave Pre-buncher for 26MHz-RFQ 3903
 
  • K. Niki, H. Ishiyama, I. Katayama, H. Miyatake, M. Okada, Y. Watanabe
    KEK, Ibaraki
  • S. Arai
    RIKEN Nishina Center, Wako
  • H. Makii
    JAEA, Ibaraki-ken
 
 

The measurement of 12C(alpha,gamma) reaction is planned at TRIAC(Tokai Radioactive Ion Accelerator Complex). An intense pulsed alpha beam with the width of less 10ns and the interval between 250ns and 500ns is required for this experiment. Because the Split Coaxial RFQ (SCRFQ), which is one of the TRIAC accelerators, has a radio frequency of 26MHz, the bunch interval becomes 38.5ns. In order to make the bunch interval of 250ns or more, the pre-buncher with a frequency of 2-4MHz, is considered to be installed upstream of the SCRFQ. It is designed as the pre-buncher has two gaps with non-Pi mode. In order to make the bunching beam profile like a pseudo sawtooth-wave, the RF voltage synthesized three harmonic frequencies is applied to these gaps. Consequently, the pre-buncher has a compact size and no leakage electric field outside gaps, and can keep the RF voltage low. Recently, the beam test of this pre-buncher with a case of 2MHz-RF and SCRFQ was performed by using 16O4+ and 12C3+ beams. The clear bunch structure with a interval of 500ns was obtained by the SSD set downstream of the SCRFQ. The results of the beam test are almost consistent with those of the beam simulation code.

 
THPEB012 Beam Test of Sawtooth-wave Pre-Buncher Coupled to a Multilayer Chopper 3906
 
  • M. Okada, H. Ishiyama, I. Katayama, H. Miyatake, K. Niki, Y. Watanabe
    KEK, Ibaraki
  • S. Arai
    RIKEN Nishina Center, Wako
  • H. Makii
    JAEA, Ibaraki-ken
 
 

In TRIAC (Tokai Radioactive Ion Accelerator Complex), intense bunched beams are planned for measurements of 12C(alpha, gamma) reactions. For 2-4MHz bunching to the 26MHz linac beams, sawtooth-wave pre-buncher has been developed. Since the wave applied to the pre-buncher is pseudo sawtooth shape synthesized from three sine waves, particles in out-of-bunch phase become backgrounds to the bunched beams. In order to remove them, a multilayer chopper has been newly installed upstream the pre-buncher. The multilayer chopper has 20 electrodes (40mm wide, 10mm long, and 0.1mm thick) piled up with gaps of 1.9mm in vertically to the beam direction. And a square-shape electric potential (100V maximum, 2-4 MHz) is applied to each electrodes alternately. The short gap makes it possible to realize sharp beam-chopping with relatively low electric potential and weak leakage electric field, although beam particles could be lost by 5% or more, since this chopper is set on the way of beams. As a result, the ratio of bunched particles to backgrounds has been improved from 3:1 to 99:1 by the chopper. High intensity beam test by 16O4+ beam will be also reported.