A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Maebara, S.

Paper Title Page
MOPD042 Commissionning of the IFMIF/EVEDA Accelerator Prototype – Objectives & Plans 777
 
  • Ch. Vermare, P. Garin, H. Shidara
    IFMIF/EVEDA, Rokkasho
  • P.-Y. Beauvais, A. Mosnier
    CEA, Gif-sur-Yvette
  • A. Facco, A. Pisent
    INFN/LNL, Legnaro (PD)
  • R. Heidinger
    Fusion for Energy, Garching
  • A. Ibarra
    CIEMAT, Madrid
  • H. Kimura, S. Maebara, S. O'hira, Y. Okumura, K. Shinto, H. Takahashi
    JAEA, Ibaraki-ken
 
 

In the frame of the IFMIF/EVEDA project, a high-intensity (125 mA) CW deuteron accelerator will be installed and commissioned at the Rokkasho's Broader Approach (BA) site. The main objective of this 9 MeV prototype is to provide information on the feasibility of the design, the manufacturing and the operation of the two linacs (up to 40 MeV) foreseen for IFMIF*. Based on the requirements for each System (Accelerators, Lithium target and Tests Facility) which are deduced from the IFMIF fusion material irradiation requirements, given by the users, the objectives of this accelerator prototype are defined and presented here. Also, because of the distributed nature of the design work and the procurement of the accelerator, organization of the installation and commissioning phase is essential. The installation and commissioning schemes, the organization proposed and the overall plans are presented.


*IFMIF International Team, IFMIF Comprehensive Design Report (CDR) 2003.

 
WEPEB006 Present Status of MPS and TS for IFMIF/EVEDA Accelerator 2695
 
  • H. Takahashi, T. Kojima, S. Maebara, T. Narita, H. Sakaki, K. Tsutsumi
    JAEA, Rokkasho, Kamikita, Aomori
 
 

Control System for IFMIF/EVEDA accelerator prototype consists of the six subsystems; Central Control System (CCS), Local Area Network (LAN), Personnel Protection System (PPS), Machine Protection System (MPS), Timing System (TS) and Local Control System (LCS). The subsystems have been designed and their test benches been fabricated at JAEA. The IFMIF/EVEDA accelerator prototype provides a deuteron beam with the power more than 1 MW, which is as same as that in cases of J-PARC and SNS. In the control system, MPS and TS with high performance and precision are strongly required to avoid the radio-activation of the accelerator components. The prototypes of the MPS and TS are testing in conjunction with the injector test starting at CEA/Saclay from autumn in 2010. These results will feedback the design and the fabrication of the control components. This paper presents the development status of the TS modules and EPICS drivers for TS and MPS, and the prospects to apply them to the Injector test.

 
MOPEC056 The Accelerator Prototype of the IFMIF/EVEDA Project 588
 
  • A. Mosnier, P.-Y. Beauvais, R. Gobin, J.-F. Gournay, P. Joyer, J. Marroncle, P.A.P. Nghiem, F. Orsini
    CEA, Gif-sur-Yvette
  • B. Brañas, A. Ibarra, P. Méndez, I. Podadera Aliseda, J. Sanz, F. Toral
    CIEMAT, Madrid
  • M. Comunian, A. Facco, A. Palmieri, A. Pepato, A. Pisent
    INFN/LNL, Legnaro (PD)
  • P. Garin, Ch. Vermare
    IFMIF/EVEDA, Rokkasho
  • R. Heidinger
    Fusion for Energy, Garching
  • H. Kimura, T. Kojima, T. Kubo, S. Maebara, S. O'hira, Y. Okumura, K. Shinto, H. Takahashi, K. Yonemoto
    JAEA, Aomori
 
 

The objectives of the IFMIF/EVEDA project are to produce the detailed design of the entire IFMIF facility, as well as to build and test a number of prototypes, including a high-intensity CW deuteron accelerator (125 mA @ 9 MeV). Most of the accelerator components (Injector, RFQ, Superconducting RF-Linac, Transport Line and Beam Dump, RF Systems, Local control systems, beam instrumentation) are designed and provided by European institutions (CEA/Saclay, CIEMAT, INFN/LNL, SCK-CEN), while the RFQ couplers, the supervision of the control system and the building including utilities constructed at Rokkasho BA site are provided by JAEA. The coordination between Europe and Japan is ensured by an international project team, located in Rokkasho, where the accelerator will be installed and commissioned. The design and R&D activities are presented, as well as the schedule of the prototype accelerator.

 
THPEA020 Design of an RF Input coupler for the IFMIF/EVEDA RFQ Linac 3720
 
  • S. Maebara
    JAEA, Ibaraki-ken
 
 

In the design of prototype RFQ linac for the IFMIF/EVEDA Project, a coupled cavity type of RFQ, which has a longitudinal length of 9.78m, was proposed to accelerate deuteron beam up to 5MeV. The operation frequency of 175MHz was selected to accelerate a large current of 125mA in CW mode. The driving RF power of 1.28 MW by 8 RF input couplers has to be injected to the RFQ cavity. As the RF input coupler design, RF losses including RF vacuum windows, based on a 4 1/16 inch and 6 1/8 inch co-axial waveguide as well as RF coupling factor of a loop antenna with varied insertion depths using an RFQ model were calculated. In this conference, these results and thermal analysis results in CW operation mode will be presented in details.