A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lundgren, S.A.

Paper Title Page
TUPEB078 Construction and Bench Testing of a Rotatable Collimator for the LHC Collimation Upgrade 1701
 
  • J.C. Smith, L. Keller, S.A. Lundgren, T.W. Markiewicz
    SLAC, Menlo Park, California
 
 

The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. The Phase II collimators must be robust in various operating conditions and accident scenarios. This paper reports on the final construction and testing of the prototype collimator to be installed in the SPS (Super Proton Synchrotron) at CERN. Bench-top measurements have demonstrated the device is fully operational and has the mechanical and vacuum characteristics acceptable for installation in the SPS.

 
TUPEB079 BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade 1704
 
  • J.C. Smith, L. Keller, S.A. Lundgren, T.W. Markiewicz, A. Young
    SLAC, Menlo Park, California
 
 

The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

 
TUPEC079 Longitudinal Wakefield Study for SLAC Rotatable Collimator Design for the LHC Phase II Upgrade 1898
 
  • L. Xiao, S.A. Lundgren, T.W. Markiewicz, C.-K. Ng, J.C. Smith
    SLAC, Menlo Park, California
 
 

SLAC is proposing a rotatable collimator design for the LHC phase II collimation upgrade. This design has 20 facet faces on each cylindrical jaw surface and the two jaws, which will move in and out during operation, are rotatable in order to introduce a clean surface in case of a beam hitting a jaw in operation. When the beam crosses the collimator, it will excite broadband and narrowband modes that can contribute to the beam energy loss and power dissipation on the vacuum chamber wall and jaw surface. In this paper, the parallel eigensolver code Omega3P is used to search for all the trapped modes in the SLAC collimator design. The power dissipation generated by the beam in different vacuum chamber designs with different jaw end geometries is simulated. It is found that the longitudinal trapped modes in the circular vacuum chamber design with larger separation of the two jaws may cause excessive heating. Adding ferrite tiles on the vacuum chamber wall can strongly damp these trapped modes. The short-range wakefields will also be calculated to determine the broadband beam heating and transverse kick on the beam. We will present and discuss the simulation results.