A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Litvinenko, V.

Paper Title Page
MOPEA028 Lattice Design for the ERL Electron Ion Collider in RHIC 127
 
  • D. Trbojevic, J. Beebe-Wang, X. Chang, Y. Hao, A. Kayran, V. Litvinenko, B. Parker, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York
  • E. Pozdeyev
    FRIB, East Lansing, Michigan
 
 

We present a medium-energy (4 GeV) electron ion collider (MeRHIC) lattice design for the Relativistic Heavy Ion Collider (RHIC). MeRHIC represents a staged approach towards the higher energy eRHIC, with MeRHIC hardware being reused for eRHIC. The lattice design includes two Energy Recovery Linacs (ERLs), multiple isochronous arcs connected to the ERLs, an interaction region design, a low energy ERL with a polarized electron source, and connecting beam lines.


* V. Litvinenko, proceedings from this conference.

 
MOPD077 Progress on Analytical Modeling of Coherent Electron Cooling 873
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

 
TUPEB040 Small Gap Magnet Prototype Measurements for eRHIC 1614
 
  • Y. Hao, P. He, A.K. Jain, V. Litvinenko, G.J. Mahler, W. Meng, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
 

In this paper we present the design and prototype measurement of small gap (5mm to 10 mm aperture) dipole and quadrupole for the future high energy ERL (Energy Recovery Linac). The small gap magnets have the potential of largely reducing the cost of the future electron-ion collider project, eRHIC, which requires a 10GeV to 30 GeV ERL with up to 6 energy recovery passes (3.8 km each pass). We also studied the sensitivity of the energy recovery pass and the alignment error in this small magnets structure and countermeasure methods.

 
TUPEB041 Study of Beam-beam Effects in eRHIC 1617
 
  • Y. Hao, V. Litvinenko, V. Ptitsyn
    BNL, Upton, Long Island, New York
 
 

Beam-beam effects in eRHIC have a number of unique features, which distinguish them from both hadron and lepton colliders. Due to beam-beam interaction, both electron and hadron beams would suffer quality degradation or beam loss from without proper treatments. Those features need novel study and dedicate countermeasures. We study the beam dynamics and resulting luminosity of the characteristics, including mismatch, disruption and pinch effects on electron beam, in additional to their consequences on the opposing beam as a wake field and other incoherent effects of hadron beam. We also carry out countermeasures to prevent beam quality degrade and coherent instability.

 
TUPEB042 The Transverse Linac Optics Design in Multi-pass ERL 1620
 
  • Y. Hao, J. Kewisch, V. Litvinenko, E. Pozdeyev, V. Ptitsyn, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

In this paper, we analyzed the linac optics design requirement for a multi-pass energy recovery linac (ERL) with one or more linacs. A set of general formula of constrains for the 2-D transverse matrix is derived to ensure design optics acceptance matching throughout the entire accelerating and decelerating process. Meanwhile, the rest free parameters can be adjusted for fulfilling other requirements or optimization purpose. As an example, we design the linac optics for the future MeRHIC (Medium Energy eRHIC) project and the optimization for enlarging the BBU threshold.

 
TUPEC075 Studies of Beam Dynamics for eRHIC 1889
 
  • G. Wang, M. Blaskiewicz, A.V. Fedotov, Y. Hao, J. Kewisch, V. Litvinenko, E. Pozdeyev, V. Ptitsyn
    BNL, Upton, Long Island, New York
 
 

We present our studies on various aspects of the beam dynamics in 'racetrack' design of the first stage electron-ion collider at RHIC (eRHIC), including transverse beam break up instabilities, electron beam emittance growth and energy loss due to synchrotron radiation, electron beam losses due to Touschek effects and residue gas scattering, beam-beam effects at the interaction region and emittance growth of ion beam due to electron bunch to bunch noises. For all effects considered above, no showstopper has been found.

 
WEXMH02 Future Electron-Hadron Colliders 2364
 
  • V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

Future projects for electron-hadron colliders will be reviewed. Existing designs will be presented and, when possible, compared. The challenges and required R&D program will be discussed.

 

slides icon

Slides

 
WEOBRA03 Beam Break-up Estimates for the ERL at BNL 2441
 
  • I. Ben-Zvi, R. Calaga, H. Hahn, L.R. Hammons, E.C. Johnson, A. Kayran, J. Kewisch, V. Litvinenko, W. Xu
    BNL, Upton, Long Island, New York
 
 

A prototype ampere-class superconducting energy recovery linac (ERL) is under advanced construction at BNL. The ERL facility is comprised of a five-cell SC Linac plus a half-cell SC photo-injector RF electron gun, both operating at 703.75 MHz. The facility is designed for either a high-current mode of operation up to 0.5 A at 703.75 MHz or a high-bunch-charge mode of 5 nC at 10 MHz bunch frequency. The R&D facility serves a test bed for an envisioned electron-hadron collider, eRHIC. The high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory, and requires to determination of HOM tolerances for a cavity upgrade. The niobium cavity has been tested at superconducting temperatures and has provided measured dipole shunt impedances for the estimate of a beam breakup instability. The facility will be assembled with a highly flexible lattice covering a vast operational parameter space for verification of the estimates and to serve as a test bed for the concepts directed at future projects.

 

slides icon

Slides

 
MOPEC023 RHIC Performance for FY10 200 GeV Au+Au Heavy Ion Run 507
 
  • K.A. Brown, L. Ahrens, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, C. Carlson, R. Connolly, T. D'Ottavio, R. De Maria, K.A. Drees, W. Fischer, W. Fu, C.J. Gardner, D.M. Gassner, J.W. Glenn, Y. Hao, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, B. Oerter, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, T. Russo, P. Sampson, J. Sandberg, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, K. Smith, D. Steski, S. Tepikian, C. Theisen, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
 

Since the last successful RHIC Au+Au run in 2007 (Run7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run7 RHIC achieved an average store luminosity of <L>=12x1026 cm-2 s-1 by operating with 103 bunches (out of 110 possible), and by squeezing to β*=0.8 m. Our goal for this year's run, Run10, was to achieve an average of <L>=27x1026 cm-2 s-1. The measures taken were decreasing β* to 0.6 m, and reducing longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF system, and separated transition crossings in both rings while ramping. We present an overview of the changes and the results in terms of Run10 increased instantaneous luminosity, luminosity lifetime, and integrated luminosity.

 
TUPEB037 Interaction-Region Design Options for a Linac-Ring LHeC 1605
 
  • F. Zimmermann, S. Bettoni, O.S. Brüning, B.J. Holzer, S. Russenschuck, D. Schulte, R. Tomás
    CERN, Geneva
  • H. Aksakal
    N.U, Nigde
  • R. Appleby
    UMAN, Manchester
  • S. Chattopadhyay, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
  • A.K. Çiftçi, R. Çiftçi, K. Zengin
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • J.B. Dainton, M. Klein
    The University of Liverpool, Liverpool
  • E. Eroglu, I. Tapan
    UU, Bursa
  • P. Kostka
    DESY Zeuthen, Zeuthen
  • V. Litvinenko
    BNL, Upton, Long Island, New York
  • E. Paoloni
    University of Pisa and INFN, Pisa
  • A. Polini
    INFN-Bologna, Bologna
  • U. Schneekloth
    DESY, Hamburg
  • M.K. Sullivan
    SLAC, Menlo Park, California
 
 

In a linac-ring electron-proton collider based on the LHC ("LR-LHeC"), the final focusing quadrupoles for the electron beam can be installed far from the collision point, as far away as the proton final triplet (e.g. 23 m) if not further, thanks to the small electron-beam emittance. The inner free space could either be fully donated to the particle-physics detector, or accommodate "slim" dipole magnets providing head-on collisions of electron and proton bunches. We present example layouts for either scenario considering electron beam energies of 60 and 140 GeV, and we discuss the optics for both proton and electron beams, the implied minimum beam-pipe dimensions, possible design parameters of the innermost proton and electron magnets, the corresponding detector acceptance, the synchrotron radiation power and its possible shielding or deflection, constraints from long-range beam-beam interactions as well as from the LHC proton-proton collision points and from the rest of the LHC ring, the passage of the second proton beam, and the minimum beta* for the colliding protons.

 
TUPEB039 Designs for a Linac-Ring LHeC 1611
 
  • F. Zimmermann, O.S. Brüning, E. Ciapala, F. Haug, J.A. Osborne, D. Schulte, Y. Sun, R. Tomás
    CERN, Geneva
  • C. Adolphsen
    SLAC, Menlo Park, California
  • R. Calaga, V. Litvinenko
    BNL, Upton, Long Island, New York
  • S. Chattopadhyay
    Cockcroft Institute, Warrington, Cheshire
  • J.B. Dainton, M. Klein
    The University of Liverpool, Liverpool
  • A.L. Eide
    LPNHE, Paris
 
 

We consider three different scenarios for the recirculating electron linear accelerator (RLA) of a linac-ring type electron-proton collider based on the LHC (LHeC): i) a basic version consisting of a 60 GeV pulsed, 1.5 km long linac, ii) a higher luminosity configuration with a 60 GeV 4 km long cw energy-recovery linac (ERL), and iii) a high energy option using a 140 GeV pulsed linac of 4 km active length. This paper describes the footprint, optics of linac and return arcs, emittance growth from chromaticity and synchrotron radiation, a set of parameters, and the performance reach for the three scenarios.