A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Lingwood, C.

Paper Title Page
TUPEC056 Evolutionary Algorithms in the Design of Crab Cavities 1850
 
  • C. Lingwood, G. Burt, K. Gunn
    Cockcroft Institute, Lancaster University, Lancaster
  • J.D.A. Smith
    Tech-X, Boulder, Colorado
 
 

The design of RF cavities is a multivariate multi-objective problem. Manual optimisation is poorly suited to this class of investigation, and the use of numerical methods results in a non-differentiable problem. Thus the only reliable optimisation algorithms employ heuristic methods. Using an evolutionary algorithm guided by Pareto ranking methods, a crab cavity design can be optimised for transverse voltage (VT) while maintaining acceptable surface fields and the correct operating frequency. Evolutionary algorithms are an example of a parallel meta-heuristic search technique inspired by natural evolution. They allow complex, epistatic (non-linear) and multimodal (multiple optima and/or sub-optima) optimization problems to be efficiently explored. Using the concept of domination the solutions can be ordered into Pareto fronts. The first of which contains a set of cavity designs for which no one objective (e.g. the transverse voltage) can be improved without decrementing other objectives.

 
WEPEC049 Novel Geometries for the LHC Crab Cavity 3001
 
  • B.D.S. Hall, G. Burt, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster
  • R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia
 
 

The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.