A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

La Civita, D.

Paper Title Page
MOPD097 FERMI@Elettra Low-Energy RF Deflector FEM Analysis 933
 
  • D. La Civita, P. Craievich, Y.A. Kharoubi, G. Penco
    ELETTRA, Basovizza
  • M. Petronio
    DEEI, Trieste
 
 

FERMI@Elettra is a soft X-ray fourth generation light source under construction at the ELETTRA laboratory. To characterize the beam phase space by means of measurements of the bunch length and of the transverse slice emittance two deflecting cavities will be positioned at two points in the linac. One will be placed at 250 MeV (low energy), after the first bunch compressor (BC1); the second at 1.2 GeV (high energy), just before the FEL process starts. The Low-Energy RF Deflector consists in a 5 cells, standing wave, normal conducting, RF copper cavity. A single ANSYS model has been developed to perform all of the calculations in a multi-step process. In this paper we discuss and report on results of electromagnetic, thermal, and structural analysis.

 
WEPD023 Development of Ultra-High Quality Surface Finish Undulator Vacuum Chambers for the FERMI@Elettra Project 3138
 
  • G. Lanfranco, P. Craievich, D. La Civita, G.L. Loda, A.A. Lutman, F. Pradal, G. Sostero, M. Stefanutti
    ELETTRA, Basovizza
  • M. Canetti, F. Gangini
    RIAL VACUUM S.p.A, Parma
 
 

The FERMI@Elettra project at the ELETTRA Laboratory of Sincrotrone Trieste (ST), currently under construction, will be comprised of a linear accelerator and two Free-Electron-Laser beamlines (FEL1, FEL2). In order to deliver high-intensity VUV and soft X-ray pulses, permanent magnet undulators with 9 mm minimum variable gap will be used. The adopted vacuum chambers will have a 7 by 25 mm2 elliptical internal cross-section. While manufacturing the vacuum chamber in aluminum helps reducing the resistive wall wakefield effects, the chamber inner wall surface quality is strongly correlated to the surface roughness wakefield component. We report on the results of the study to improve the wall surface finish and lower the roughness periodicity. The chamber manufacturing status and its alignment mechanism is also presented.