A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kostin, D.

Paper Title Page
WEPE008 Construction of the S1-Global Cryomodules for ILC 3356
 
  • N. Ohuchi, H. Hayano, N. Higashi, E. Kako, Y. Kondou, H. Nakai, S. Noguchi, T. Saeki, M. Satoh, M. Sawabe, T. Shidara, T. Shishido, A. Terashima, K. Tsuchiya, K. Watanabe, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki
  • T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, R.D. Kephart, J.S. Kerby, D.V. Mitchell, Y. Orlov, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • A. Bosotti, C. Pagani, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, H. Weise
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY has been constructed by INFN. The module for four KEK cavities is being modified at present. The assembly of the cryomodules is scheduled from January 2010, and the operation of the system is scheduled from June 2010 at the KEK-STF. In this paper, the construction of the S1-Global cryomodule will be presented.

 
THPD003 Test and Commissioning of the Third Harmonic RF System for FLASH 4281
 
  • E. Vogel, C. Albrecht, N. Baboi, C. Behrens, T. Delfs, J. Eschke, C. Gerth, M.G. Hoffmann, M. Hoffmann, M. Hüning, R. Jonas, J. Kahl, D. Kostin, G. Kreps, F. Ludwig, W. Maschmann, C. Mueller, P. Nommensen, J. Rothenburg, H. Schlarb, Ch. Schmidt, J.K. Sekutowicz
    DESY, Hamburg
  • H.T. Edwards, E.R. Harms, A. Hocker, T.N. Khabiboulline
    Fermilab, Batavia
  • M. Kuhn
    Uni HH, Hamburg
 
 

Ultra short bunches with high peak current are required for efficient creation of high brilliance coherent light at the free electron laser FLASH. They are obtained by a two stage transverse magnetic chicane bunch compression scheme based on acceleration of the beam off the rf field crest. The deviation of the rf field's sine shape from a straight line leads to long bunch tails and reduces the peak current. This effect will be eliminated by adding the Fermilab-built third harmonic superconducting accelerating module operating at 3.9 GHz to linearize the rf field. The third harmonic module also allows for the creation of uniform intensity bunches of adjustable length that is needed for seeded operation. This paper summarizes the results from the first complete rf system test at the crymodule test bench at DESY and the first experience gained operating the system with beam in FLASH.