A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Iseki, Y.

Paper Title Page
MOPEA013 Laser-driven Proton Accelerator for Medical Application 88
 
  • M. Nishiuchi, P.R. Bolton, T. Hori, K. Kondo, A.S. Pirozhkov, A. Sagisaka, H. Sakaki, A. Yogo
    JAEA, Ibaraki-ken
  • Y. Iseki, T. Yoshiyuki
    Toshiba, Tokyo
  • S. Kanazawa, H. Kiriyama, M. Mori, K. Ogura, S. Orimo
    JAEA/Kansai, Kyoto
  • A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

The interaction between the high intensity laser and the solid target produces a strong electrostatic proton acceleration field (1 TV/m) with extraordinary small size, contributing to downsizing of the particle accelerator. The proton beam exhibits significant features. having very small source size(~10 um), short pulse duration (~ps) and very low transverse emittance. However it is a diverging beam (half angle of ~10 deg) with wide energy spread of ~100 %. Because of these peculiar characteristics the proton beam attracts many fields for applications including medical applications. To preserve these peculiar characteristics, which are not possessed by those beams from the conventional accelerators, towards the irradiation points, we need to establish a peculiar beam transport line. As the first step, here we report the demonstration of the proto-type laser-driven proton medical accelerator beam line in which we combine the laser-driven proton source with the beam transport technique already established in the conventional accelerator for the purpose of comparison between the data and the particle transport simulation code, PARMILA*.


*Harunori Takeda, 2005, Parmila LANL (LA-UR-98-4478).