A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Insepov, Z.

Paper Title Page
WEPE067 Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider 3497
 
  • M. Chung, A. Jansson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia
  • Z. Insepov
    ANL, Argonne
 
 

Ionization cooling is a critical building block for the realization of a muon collider. To suppress breakdown in the presence of the external magnetic field, an idea of using an RF cavity filled with high pressure hydrogen gas is being considered for the cooling channel design. In the high pressure RF cavity, ionization energy loss and longitudinal momentum recovery can be achieved simultaneously. One possible problem expected in the high pressure RF cavity is, however, the dissipation of significant RF power through the electrons accumulated inside the cavity. The electrons are generated from the beam-induced ionization of the high pressure gas. To characterize this detrimental loading effect, we develop a simplified model that relates the electron density evolution and the observed pickup voltage signal in the cavity, with consideration of several key molecular processes such as the formation of the polyatomic molecules and ions, excitation, recombination and electron attachment. This model is expected to be compared with the actual beam test of the cavity in the MuCool Test Area (MTA) of Fermilab.

 
WEPE069 Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities 3503
 
  • K. Yonehara, M. Chung, A. Jansson, A. Moretti, M. Popovic, A.V. Tollestrup
    Fermilab, Batavia
  • M. Alsharo'a, R.P. Johnson, M. Notani
    Muons, Inc, Batavia
  • D. Huang
    IIT, Chicago, Illinois
  • Z. Insepov
    ANL, Argonne
  • T. Oka, H. Wang
    University of Chicago, Chicago, Illinois
  • D. Rose
    Voss Scientific, Albuquerque, New Mexico
 
 

A high pressurizing hydrogen gas filled RF cavity has a great potential to apply for muon colliders. It generates high electric field gradients in strong magnetic fields with various conditions. As the remaining demonstration, it must work under high radiation conditions. A high intensity muon beam will generate a beam-induced electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the recent non-beam test and discuss the electron swarm dynamics which plays a key role to develop a high pressure RF cavity.