A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Iida, N.

Paper Title Page
TUPEA023 The Design of Beam Abort System for the Super KEKB 1378
 
  • T. Mimashi, N. Iida, M. Kikuchi
    KEK, Ibaraki
  • K. Abe, S. Abe
    Hitachi Haramachi Electronics Co. Ltd., Hitachishi, Ibaraki
  • K. Iwamoto
    KFG, NEUSS
  • Y. Makino, T. Ozawa
    Kikusui Chemical Industries Co. Ltd, Kagamihara Shiga
  • A. Sasagawa
    KYOCERA Corporation, Higashiomi-city, Shiga
  • A. Tokuchi
    Pulsed Power Japan Laboratory Ltd., Kusatsu-shi Shiga
 
 

New beam abort system designed for KEKB upgrade, consists of horizontal and vertical kicker magnets, pulsed quadrupole magnets, a Lambertoson septum magnet and a beam dump. Water-cooling ceramic chambers are used for the kicker and pulsed quadrupole magnets. At the KEKB upgrade project, the beam abort gap is required to be less than 200 nsec. The beam currents are increased and their emittance is supposed to be much smaller than KEKB. In order to avoid melting the extraction Ti window, the pulsed quadrupole magnets will be installed. They enlarge the beam cross section at the extract window. The components for the SuperKEKB abort system are developed. The compact water-cooling ceramic chambers are developed to reduce the gap of kicker magnets and bore radius of the pulsed quadrupole magnets. The power supply for the kicker magnet is also developed to satisfy the 200 nsec rise time requirement.

 
TUPEB019 Evaluation of the Detector BG for SuperKEKB 1557
 
  • M. Iwasaki, Y. Funakoshi, J. Haba, N. Iida, K. Kanazawa, H. Koiso, Y. Ohnishi, K. Shibata, S. Tanaka, T. Tsuboyama, S. Uno, Y. Ushiroda
    KEK, Ibaraki
  • H. Aihara, C. Ng, S. Sugihara
    University of Tokyo, Tokyo
  • H. Nakano, H. Yamamoto
    Tohoku University, Graduate School of Science, Sendai
 
 

SuperKEKB is the upgrade plan of the current B-factory experiment with the KEKB accelerator at KEK. Its luminosity is designed to be 8x1035 /cm2/s (40 times higher than KEKB) and the integrated luminosity is expected to be 50 ab-1. In SuperKEKB, it is important to evaluate the beam induced BG and design the interaction region (IR) to assure the stable detector operation. To estimate the beam induced BG, we construct the beam-line simulation based on the GEANT4 simulation. In this paper, we report the BG evaluation and the IR design for SuperKEKB.

 
TUPEB054 Design of Positron Damping Ring for Super-KEKB 1641
 
  • M. Kikuchi, T. Abe, K. Egawa, H. Fukuma, K. Furukawa, N. Iida, H. Ikeda, T. Kamitani, K. Kanazawa, K. Ohmi, K. Oide, K. Shibata, M. Tawada, M. Tobiyama, D.M. Zhou
    KEK, Ibaraki
 
 

Super-KEKB, an upgrade plan of the present KEKB collider, has recently changed its scheme from 'high current' option to 'nano-beam' scheme. In the latter the current is relatively low(4A/2.3A for LER/HER ring) compared to that of the high-current option(9.4A/4.1A), while the vertical beam size is squeezed to 60 nm at the interaction point to get the high luminosity. The emittance of the injected beam should be low and, since the Tousheck lifetime is very short(600 sec), the intensity of the positron beam is as high as 8 nC/pulse. For the electron beam a low-emittance high-intensity RF gun is adopted. For the positron beam a damping ring has been proposed. The design of the damping ring has been performed for the high-current option*. In this paper an updated design for the nano-beam scheme is presented.


* Nucl. Instr. Meth. A 556 (2006) 13-19

 
WEPEA034 Development and Operational Status of PF-Ring and PF-AR 2561
 
  • T. Honda, T. Aoto, S. Asaoka, K. Ebihara, K. Furukawa, K. Haga, K. Harada, Y. Honda, T. Ieiri, N. Iida, M. Izawa, T. Kageyama, M. Kikuchi, Y. Kobayashi, K. Marutsuka, A. Mishina, T. Miyajima, H. Miyauchi, S. Nagahashi, T.T. Nakamura, T. Nogami, T. Obina, K. Oide, M. Ono, T. Ozaki, C.O. Pak, H. Sakai, H. Sakai, Y. Sakamoto, S. Sakanaka, H. Sasaki, Y. Sato, K. Satoh, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, R. Takai, S. Takasaki, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, M. Yamamoto, Ma. Yoshida, S.I. Yoshimoto
    KEK, Ibaraki
 
 

KEK manages two synchrotron radiation sources, Photon Factory storage ring (PF-ring) of 2.5 GeV and Photon Factory advanced ring (PF-AR) of 6.5 GeV. These rings share an injector linac with the two main rings of KEK B-factory, 8-GeV HER and 3.5-GeV LER. Recently, the linac has succeeded in a pulse by pulse multi-energy acceleration. A top-up operation of PF-ring has been realized as the simultaneous continuous injection to the 3 rings, PF-ring, HER and LER. Development of new injection scheme using a pulsed sextupole magnet continues aiming at practical use in the top-up operation. A rapid-polarization-switching device consisting of tandem two APPLE-II type undulators has been developed at PF-ring. The first undulator was installed in 2008, and the second one will be installed in 2010 summer. PF-AR, operated in a single-bunch mode at all times, has been suffered from sudden lifetime drop phenomena attributed to dust trapping for many years. Using the movable electrodes installed for experiment, we confirmed that the discharge created by the electrode was followed by the dust trapping, and succeeded in a visual observation of luminous dust streaking in front of CCD cameras.

 
WEOAMH02 Recent Progress of KEKB 2372
 
  • Y. Funakoshi, T. Abe, K. Akai, Y. Cai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, T. Furuya, J. Haba, T. Ieiri, N. Iida, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, A. Morita, T.T. Nakamura, K. Nakanishi, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, T. Oki, M. Ono, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, T. Sugimura, Y. Susaki, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, S.I. Yoshimoto, D.M. Zhou, Z.G. Zong
    KEK, Ibaraki
 
 

KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB.

 

slides icon

Slides

 
THPD004 Design of the Positron Transport System for SuperKEKB 4284
 
  • N. Iida, T. Kamitani, M. Kikuchi, Y. Ogawa, K. Oide
    KEK, Ibaraki
 
 

SuperKEKB, the upgrade plan of KEKB, aims to boost the luminosity up to 8·1035 /cm2/s. The beam energy of the Low Energy Ring (LER) is 4 GeV for positrons, and that of the High Energy Ring is 7 GeV for electrons. SuperKEKB is designed to produce low emittance beams. The horizontal and vertical emittances of the injection beams are 4nm and 1nm, respectively, which are one or two orders smaller than those of KEKB. The positron injector system consists of the source, capture system, L-band and S-band linacs, collimators, an energy compression system (ECS), a 1-GeV damping ring, a bunch compression system (BCS), S-band and C-band linacs, and a beam transport line into the LER. This paper reports a design of the positron beam transport system from L-band linacs to SuperKEKB.