A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hsu, K.T.

Paper Title Page
MOPE066 Application of BPM Data to Locate Noise Source 1131
 
  • P.C. Chiu, J. Chen, Y.K. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.H. Kuo
    NSRRC, Hsinchu
 
 

To keep and achieve desired performance of a modern synchrotron light source, it requires continuous efforts including good design of the accelerator, good performed subsystems and sophisticated feedback system. While some wonders happen unexpectedly and could deteriorate performance of the light source. For examples, some strong source occasionally occurred especially after long shut down or malfunction of some corrector power supply and it would result in increased noise level. Non ideal injection element will cause large perturbation as well. This report presents algorithms to spatially locate source and summarize some of our practical experience to identify the source.

 
TUPEC034 Dual One-turn Coils for TLS Extraction Kicker Magnet 1796
 
  • K.L. Tsai, C.-T. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.H. Hu, K.-K. Lin, C.Y. Wu
    NSRRC, Hsinchu
  • Y.-C. Liu
    National Tsing-Hua University, Hsinchu
 
 

The test results of a dual one-turn coils configuration for Taiwan Light Source (TLS) booster extraction kicker is presented in this report. The achieved capability of the test unit demonstrates that the rise-time of the kicker current pulse has been improved for beam extraction optimization. This improved performance is mainly accomplished by reducing the load inductance effectively with a dual one-turn coils configuration. The measured result of rise-time variation versus the corresponding load inductance change is briefly discussed.

 
WEPEB016 Application of Modbus-TCP in TPS Control System 2719
 
  • Y.K. Chen, J. Chen, Y.-S. Cheng, P.C. Chiu, K.T. Hsu, K.H. Hu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu
 
 

Modbus-TCP is a widely used in industry for a long time and accelerator control system recently. Modbus protocol over Ethernet has advantages for non real-time applications due to its maturity. The TPS (Taiwan Photon Source) project will have many Modbus-TCP enable devices which distributed in utility system and accelerator system. The accelerator control environment of TPS project is an EPICS toolkit based system. Modbus-TCP might adopt for some subsystems. There are several possible Modbus-TCP devices including the prototype power supply for magnet field mapping application equip with Modbus-TCP interface, vacuum system local controller, front-end controller, and some monitoring devices. In this paper, we will summarise preparation efforts to accommodate the Modbus-TCP support in the TPS control system.

 
WEPEB017 Waveform and Spectrum Acquisition for the TLS 2722
 
  • Y.-S. Cheng, J. Chen, Y.K. Chen, K.T. Hsu, K.H. Hu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu
 
 

To enhance waveform and spectrum remote access supports in the Taiwan Light Source (TLS), development of the EPICS support of Ethernet-based oscilloscope and spectrum analyzer for the TLS is under way. The EPICS platforms which built to interface these instruments could access the waveform and spectrum through the PV (Process Variable) channel access. By using remote operations of waveform and spectrum acquisition, long distance cabling could be eliminated and signal quality be improved. The EDM (Extensible Display Manager) tool is used to implement the operation interface of control console and provide waveform display. According to specific purpose use, different graphical user interfaces to integrate waveform and spectrum acquisition are built. This project is the preparation for future control room integration with the Taiwan Photon Source control room. The efforts will be described at this report.

 
WEPEB018 Design Status of the TPS Control System 2725
 
  • K.T. Hsu, Y.-T. Chang, J. Chen, Y.K. Chen, Y.-S. Cheng, P.C. Chiu, S.Y. Hsu, K.H. Hu, C.H. Kuo, D. Lee, Y.R. Pan, C.-J. Wang, C.Y. Wu
    NSRRC, Hsinchu
 
 

Implementation of the Control system for the Taiwan Photon Source (TPS) is on going. The TPS control system will provide versatile environments for machine commissioning, operation, and to do accelerator experiments. The control system is based on EPICS toolkits. Test-bed has set up for various developments. The open architecture will facilitate machine upgrade, modification easily and minimize efforts for machine maintenance. Performance and reliability of the control system will be guaranteed from the design phase. Development status will be summary in this report.

 
WEPEB019 Virtual Accelerator Development for the TPS 2728
 
  • P.C. Chiu, J. Chen, Y.K. Chen, Y.-S. Cheng, K.T. Hsu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu
 
 

In order to help early development of TPS control system and user interface, a virtual accelerator model is constructed. The virtual accelerator has been created by AT toolbox and simulated beam behavior; the Middle Layer providing high level accelerator application is also used. LabCA interfaces between Matlab and EPICS (Experimental Physics and Industrial Control System). Such a system could speed development of commissioning required software and examine the correction of all procedures.

 
WEPEB020 Control of the Pulse Magnet Power Supply by EPICS IOC Embedded PLC 2731
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo, D. Lee, K.-K. Lin
    NSRRC, Hsinchu
  • K. Furukawa, J.-I. Odagiri
    KEK, Ibaraki
 
 

The EPICS embedded programmable logic controller (PLC) has been developed based on F3RP61-2L, a CPU module of a FA-M3R series PLC running Linux OS. The EPICS IOC resided in F3RP61-2L module can access the registers of sequence CPU modules and I/O modules of the PLC. The embedded EPICS PLC was applied to control the prototype of pulse magnet power supply and support functionality testing remotely. The system comprises various input/output modules and a CPU module with built-in Ethernet interface. The control information (status of the power supply, ON, OFF, warn up, reset, read/write voltage, etc.) can be accessed remotely using EPICS client tools. The EDM is selected to develop the GUI for itself. Efforts are summarized in this report.

 
WEPEB043 Integrated Orbit Feedback System Design in the TPS 2785
 
  • C.H. Kuo, J. Chen, P.C. Chiu, K.T. Hsu, K.H. Hu
    NSRRC, Hsinchu
 
 

As the latest generation light source, TPS (Taiwan Photon Source) has stringent requirements to perform submicron beam stability with low emittance. The slow and fast correctors of integrated orbit feedback system have been designed for TPS project, therefore some feedback system designed based on them an operation experiences from TLS. This report will present performance simulation and the initial design of system infrastructure for large scale calculation and wide bandwidth communication. To perform this requirement, FPGA-based platform will be implemented to achieve low latency and fast computation. Some studies of integrated feedback loop, communication structure, devices control such as BPM electronics and corrector power supplies are also described.

 
WEPD073 TPS Corrector Magnet Power Converter 3269
 
  • K.-B. Liu, K.T. Hsu, Y.D. Li, B.S. Wang
    NSRRC, Hsinchu
  • J.C. Hsu
    CMS/ITRI, Hsinchu
 
 

Based on the requirement of beam stability for the third-generation synchrotron radiation light source is more stringent, lower ripple and higher bandwidth of output current of corrector magnet power converters should be developed to implement the closed orbit correction of Taiwan Photo Source (TPS). The ±10A/±50V corrector magnet power converter uses a full bridge configuration, the switching frequency of power MOSFET is 40 kHz, in that each bridge leg has its own independent PWM controller and the output current bandwidth is 1 kHz when connected with the corrector magnet load. Using a DCCT as the current feedback component the output current ripple of this converter could be lower than 5 ppm. In this paper, we will describe the hardware structure and control method of the corrector magnet power converter and the test results will be demonstrated.

 
WEPD075 TPS Magnet Power Supply System 3275
 
  • K.-B. Liu, K.T. Hsu, Y.D. Li, B.S. Wang
    NSRRC, Hsinchu
 
 

The Taiwan Photon Source (TPS), a third-generation synchrotron radiation light source, should be installed with 1032 sets of magnet power supplies for the storage ring and 152 sets for the injector. All of the power supplies are preferred in PWM switched mode with IGBT or MOSFET. A high precision DC power supply for 48 dipoles of the storage ring; there are 240 quadrupole magnets and 168 sextupole magnets in storage ring, the main winding of quadrupole and 168 sextupole magnets are powered by individual power supplies. In the booster ring, one set of dynamic power supply for the dipole magnets and four sets for quadrupole magnets run at the biased 3Hz quasi sinusoidal wave. There are several hundred corrector (fast and slow) magnets and skew quadrupole magnets in storage ring and injector are powered by the same bipolar power converters.

 
WEPD077 The Fully Digital Controlled Corrector Magnet Power Converter 3278
 
  • B.S. Wang, K.T. Hsu, Y.D. Li, K.-B. Lin, K.-B. Liu
    NSRRC, Hsinchu
 
 

This paper presents an implementation of a precision corrector magnet power converter using the digitally controlled pulse width modulation method. The output current precision of this ±10A/±50V corrector magnet power converter is within ±10ppm. The digital control circuit of the power converter is implemented with using a high speed ADS8382 18-bits analog-to-digital converter and a TMS320F28335 digital signal processor. The converter uses a full bridge configuration, the switching frequency of power MOSFET is 40 kHz and the control resolution is 17-bits. Using a DCCT as the current feedback component the output current ripple of this converter could be lower than 5 ppm that is beyond the requirement of TLS corrector power converter and suitable to be used in TPS.

 
WEPD094 Performance of a PFN Kicker Power Supply for TPS Project 3317
 
  • K.L. Tsai, C.-T. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.-K. Lin, K.-B. Liu
    NSRRC, Hsinchu
  • Y.-C. Liu
    National Tsing-Hua University, Hsinchu
 
 

A test unit of a pulse-forming-network (PFN) kicker power supply has been designed and fabricated for Taiwan Photon Source (TPS) beam injection/extraction of the booster ring. In order to fulfill the requirements, the performance of the designed unit has been bench tested and the results are examined for evaluation purpose. The pulse-to-pulse stability and the flattop specifications are specified according to the beam injection/extraction requirements. Effort has been made to enhance the rise/fall time of the delivered pulse current. The engineering evaluation and its possible application for beam diagnostics purpose are briefly discussed.

 
THPE031 MATLAB-based Accelerator Physics Applications for the TPS Commissioning and Operation at NSRRC 4584
 
  • F.H. Tseng, H.-P. Chang, J. Chen, P.C. Chiu, K.T. Hsu, C.-C. Kuo, H.-J. Tsai
    NSRRC, Hsinchu
 
 

Taiwan Photon Source (TPS) is the second synchrotron light source in Taiwan which is currently under construction at the NSRRC existing site. With a 3 GeV beam energy, low emittance, 24-DB structure in the storage ring, the TPS can generate higher brilliance and more abundant X-ray sources. TPS is in complementary to the overbooked 1.5 GeV Taiwan Light Source (TLS). The MATLAB-based accelerator physics application programs planned for the TPS commissioning and operation is a high-level software collection including the MML, AT, LOCO, etc., developed at ALS and SLAC. In this report, the testing results by employing this package to the Taiwan Light Source (TLS) are given and the simulations of the TPS virtual machine are also demonstrated.