A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hemsing, E.

Paper Title Page
MOPE092 Ultrashort Bunch Length Diagnostic with Sub-femtosecond Resolution 1200
 
  • G. Andonian
    RadiaBeam, Marina del Rey
  • G. Andonian, E. Hemsing, P. Musumeci, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
 
 

For successful operation and beam characterization, fourth generation light sources require the observation of sub-picosecond bunches with femtosecond resolution. In this paper, we report on the design and development of a novel technique to achieve sub-femtosecond temporal resolution of high brightness bunches. The technique involves the coupling of the electron beam to a high power laser in an undulator field, which is optimized to maximize the angular deviation of the bunch. The beam angular components are imaged on a distant screen yielding a sweep across angles in one dimension. The addition of an x-band deflecting cavity downstream of the undulator creates another sweep of the beam, in the perpendicular dimension. The temporal resolution of the bunch is dependent on the seed laser wavelength and the spatial resolution of the screen. Initial calculations show that for a CO2 laser (T~30fs) and a phosphor screen (~50micron spatial resolution), the longitudinal resolution is approximately l/200 of the laser wavelength, or ~150 attoseconds.

 
TUPE063 Generation of Optical Orbital Angular Momentum in a Free-electron Laser 2278
 
  • E. Hemsing, A. Marinelli, J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

A simple scheme to generate intense light with orbital angular momentum in an FEL is described. The light is generated from a helically pre-bunched beam created in an upstream modulator. The beam energy is tuned to maximize gain in the higher-order mode which reaches saturation well before the spontaneous modes driven by noise are amplified.

 
THPEC015 Breaking the Attosecond, Angstrom and TV/m Field Barriers with Ultra-fast Electron Beams 4080
 
  • J.B. Rosenzweig, G. Andonian, A. Fukasawa, E. Hemsing, G. Marcus, A. Marinelli, P. Musumeci, B.D. O'Shea, F.H. O'Shea, C. Pellegrini, D. Schiller, G. Travish
    UCLA, Los Angeles, California
  • P.H. Bucksbaum, M.J. Hogan, P. Krejcik
    SLAC, Menlo Park, California
  • M. Ferrario
    INFN/LNF, Frascati (Roma)
  • S.J. Full
    Penn State University, University Park, Pennsylvania
  • P. Muggli
    USC, Los Angeles, California
 
 

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This uses of very low charge beams, which may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the Stanford X-ray FEL (LCLS, first of its kind, built with essential UCLA leadership) have produced ~2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments at UCLA in cryogenic undulator technology, to create compact accelerator/undulator systems that can lase below 0.15 Angstroms, or be used to permit 1.5 Angstrom operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.