A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hedin, D.

Paper Title Page
WEPE071 Integrated Low Beta Region Muon Collider Detector Design 3506
 
  • M.A.C. Cummings
    Muons, Inc, Batavia
  • D. Hedin
    Northern Illinois University, DeKalb, Illinois
 
 

Muon Colliders produce high rates of unwanted particles near the beams in the detector regions. Previous designs have used massive shielding to reduce these backgrounds, at a cost of creating dead regions in the detectors. To optimize the physics from the experiments, new ways to instrument these regions are needed. Since the last study of a muon collider detector in the 1990s, new types of detectors, such as solid state photon sensors that are fine-grained, insensitive to magnetic fields, radiation-resistant, fast, and inexpensive have become available. These can be highly segmented to operate in the regions near the beams. We re-evaluate the detector design, based on new sensor technologies. Simulations that incorporate conditions in recent muon collider interaction region designs are used to revise muon collider detector parameters based on particle type and occupancy. Shielding schemes are studied for optimization. Novel schemes for the overall muon collider design, including "split-detectors", are considered.