A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Guiducci, S.

Paper Title Page
TUPEB002 Design and Test of the Clearing Electrodes for e- loud Mitigation in the e+ DAΦNE Ring 1515
 
  • D. Alesini, A. Battisti, O. Coiro, T. Demma, S. Guiducci, V. Lollo, C. Milardi, P. Raimondi, M. Serio, R.S. Sorchetti, M. Zobov
    INFN/LNF, Frascati (Roma)
 
 

Metallic clearing electrodes have been designed to absorb the photo-electrons in the DAΦNE positron ring. They have been inserted in the wigglers and dipoles vacuum chambers and have been connected to external high voltage generators. In the paper we present the design of the devices and the results of the electromagnetic simulations related to both the transfer and longitudinal beam coupling impedances. We also present the results of the RF measurements and the first results with the DAΦNE circulating positron beam.

 
TUPEB057 Positron Production and Capture based on Low Energy Electrons for SuperB 1650
 
  • F. Poirier, I. Chaikovska, O. Dadoun, P. Lepercq, R. Roux, A. Variola
    LAL, Orsay
  • R. Boni, S. Guiducci, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
 
 

Providing a high quality and sufficient high current positron beam for the ultra high luminosity B-factory SuperB is a major goal. In this paper a proposition for positrons production and capture scheme based on low energy electrons up to1 GeV is presented. For this technique, several types of flux concentrator used to capture the positrons are being studied. The following accelerating section bringing the positrons up to 280 MeV and the total yield for L-band and S-band type accelerators are given. Also the result of the benchmark between ASTRA and a LAL code based on Geant4 toolkit simulation is discussed.

 
TUPEB003 The SuperB Project Accelerator Status 1518
 
  • M.E. Biagini, D. Alesini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, F. Marcellini, G. Mazzitelli, M.A. Preger, P. Raimondi, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma)
  • M.A. Baylac, J.-M. De Conto, Y. Gomez-Martinez, N. Monseu, D. Tourres
    LPSC, Grenoble
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, A.S. Fisher, D. Kharakh, A. Krasnykh, N. Li, D.B. MacFarlane, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J. Seeman, M.K. Sullivan, A.W. Weidemann, J. Weisend, U. Wienands, W. Wittmer, A.C. de Lira
    SLAC, Menlo Park, California
  • S. Bettoni
    CERN, Geneva
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • J. Bonis, G. Le Meur, B.M. Mercier, F. Poirier, C. Prevost, C. Rimbault, F. Touze, A. Variola
    LAL, Orsay
  • F. Bosi
    INFN-Pisa, Pisa
  • A. Chancé, F. Méot, O. Napoly
    CEA, Gif-sur-Yvette
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • I. Koop, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin
    BINP SB RAS, Novosibirsk
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa
 
 

The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the B mesons cm energy. The accelerator design has been extensively studied and changed during the past year. The present design, - based on the new collision scheme, with large Piwinski angle and the use of 'crab' sextupoles, which has been successfully tested at the DAPHNE Phi-Factory at LNF Frascati, - provides larger flexibility, better dynamic aperture and in the Low Energy Ring spin manipulation sections, needed for having longitudinal polarization of the electron beam at the Interaction Point. The Interaction Region has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the design status, including details on lattice and spin manipulation will be presented in this paper.

 
TUPEB006 DAΦNE Developments for the KLOE-2 Experimental Run 1527
 
  • C. Milardi, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, F. Bossi, B. Buonomo, A. Clozza, G.O. Delle Monache, T. Demma, E. Di Pasquale, G. Di Pirro, A. Drago, M. Esposito, A. Gallo, A. Ghigo, S. Guiducci, C. Ligi, F. Marcellini, G. Mazzitelli, L. Pellegrino, M.A. Preger, L. Quintieri, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Zobov
    INFN/LNF, Frascati (Roma)
  • S. Bettoni
    CERN, Geneva
  • E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
 
 

Recently the peak luminosity achieved on the DAΦNE collider has been improved by almost a factor 3 by implementing a novel collision scheme based on large Piwinski angle and Crab-Waist. This encouraging result opened new perspectives for physics research and a new run with the KLOE-2 detector has been scheduled to start by spring 2010. The KLOE-2 installation is a complex operation requiring a careful design effort and a several months long shutdown. The high luminosity interaction region has been deeply revised in order to take into account the effect on the beam caused by the solenoidal field of the experimental detector and to ensure background rejection. The shutdown has been also used to implement several other modifications aimed at improving beam dynamics: the wiggler poles have been displaced from the magnet axis in order to cancel high order terms in the field, the feedback systems have been equipped with stronger power supplies and more efficient kickers and electrodes have been inserted inside the wiggler and the dipole vacuum chambers, in the positron ring, to avoid the e-cloud formation. A low level RF feedback has been added to the cavity control in both rings.

 
WEPE086 A Low Emittance Lattice for the ILC 3 km Damping Ring 3545
 
  • S. Guiducci, M.E. Biagini
    INFN/LNF, Frascati (Roma)
 
 

A new baseline parameter set has been proposed for the ILC with a reduction by a factor 2 in the number of bunches. This option will allow for a corresponding factor 2 decrease in the Damping Ring circumference, with significant cost savings. A low emittance lattice for a 3.2 km long damping ring has been designed, with the same racetrack layout of the present reference 6.4 km long lattice and similar straight sections. The technical work done for the longer ring can be easily applied to the shorter one. The lattice is based on an arc cell design adopted for the SuperB collider and allows some flexibility in tuning emittance and momentum compaction.

 
WEPE097 Recommendation for the Feasibility of More Compact LC Damping Rings 3578
 
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
  • C.M. Celata, M.A. Furman, M. Venturini
    LBNL, Berkeley, California
  • J.A. Crittenden, G. Dugan, M.A. Palmer
    CLASSE, Ithaca, New York
  • T. Demma, S. Guiducci
    INFN/LNF, Frascati (Roma)
  • K.C. Harkay
    ANL, Argonne
  • O.B. Malyshev
    Cockcroft Institute, Warrington, Cheshire
  • K. Ohmi, K. Shibata, Y. Suetsugu
    KEK, Ibaraki
  • Y. Papaphilippou, G. Rumolo
    CERN, Geneva
 
 

As part of the International Linear Collider (ILC) collaboration, we have compared the electron cloud effect for different Damping Ring designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. These studies were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design and would allow to considerably reduce the number of components, wiggler magnets and costs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.

 
THPEA007 The Injection System of the INFN-SuperB Factory Project: Preliminary Design 3685
 
  • R. Boni, S. Guiducci, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • A. Chancé
    CEA, Gif-sur-Yvette
  • O. Dadoun, F. Poirier, A. Variola
    LAL, Orsay
  • J. Seeman
    SLAC, Menlo Park, California
 
 

The ultra high luminosity B-factory (SuperB) project of INFN requires a high performance and reliable injection system, providing electrons at 4 GeV and positrons at 7 GeV, to fulfill the very tight requirements of the collider. Due to the short beam lifetime, continuous injection of electrons and positrons in both HER and LER rings is necessary to keep the average luminosity at a high level. Polarized electrons are required for experiments and must be delivered by the injection system, due to the beam lifetime shorter than the polarization build-up: they will be produced by means of a SLAC-SLC polarized gun. One or two 1 GeV damping rings are used to reduce e+ and e- emittances. Two schemes for positron production are under study, one with electron-positron conversion at low energy (<1 Gev), the second at 6 GeV with a recirculation line to bring the positrons back to the damping ring. Acceleration through the Linac is provided by a S-band RF system made of traveling wave, room temperature accelerating structures. An option to use the C-band technology is also presented.

 
THPE065 Multipoles Minimization in the DAΦNE Wigglers 4665
 
  • S. Bettoni
    CERN, Geneva
  • B. Bolli, S. Ceravolo, S. Guiducci, F. Iungo, M.A. Preger, P. Raimondi, C. Sanelli, F.M. Sardone
    INFN/LNF, Frascati (Roma)
 
 

The wigglers of the DAΦNE main rings have been one of the main sources of the non-linearities in the collider. A method to minimize the odd integrated multipoles around the beam trajectory (the even ones tend to vanish due to the periodicity of the device) is described. It consists in displacing the magnetic axis of each pole towards the position of the beam in such a way that the integrated odd multipoles are minimized in each half period of the wiggler. After a study, including multipolar and tracking analysis, has performed to determine the best position of the axes, the wigglers in the DAΦNE main rings have been modified accordingly. To validate this approach magnetic measurements and tests with beam by means of closed orbit bumps have been performed.