A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Grudiev, A.

Paper Title Page
MOPD017 Impedance Considerations for the Design of the Vacuum System of the CERN PS2 Proton Synchrotron 708
 
  • K.L.F. Bane, G.V. Stupakov, U. Wienands
    SLAC, Menlo Park, California
  • M. Benedikt, A. Grudiev, E. Mahner
    CERN, Geneva
 
 

In order for the LHC to reach an ultimate luminosity goal of 1035, CERN is considering upgrade options for the LHC injector chain, including a new 50 GeV synchrotron of about 1.3 km length for protons and heavy ions, to be called the PS2. In this ring the proton energy is ramped from 4 GeV in 1.2 s, and the design (proton) current is 2.7 A. The present baseline of the vacuum system considers elliptical stainless steel chambers bakeable up to 300°C, various coatings to mitigate electron cloud are under study. For a bare stainless steel or Inconel chamber, the resistive wall wake alone will lead to multi-bunch instability, whereas for transverse mode coupling (TMCI), the threshold is above the design beam current, though this instability may become an issue once other impedance contributions are taken into account. A copper layer of varying thickness is shown to raise the TMCI threshold but to have relatively little effect on the multi-bunch resistive-wall growth rate unless the coating is very thick. We are also studying the effect of the copper coating on the penetration of the guide field during the energy ramp, which sets an upper limit on the allowable thickness.

 
TUPD056 Update of the SPS Impedance Model 2057
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, O.E. Berrig, F. Caspers, A. Grudiev, N. Mounet, E. Métral, G. Rumolo, B. Salvant, E.N. Shaposhnikova, C. Zannini
    CERN, Geneva
  • M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
 

The beam coupling impedance of the CERN SPS is expected to be one of the limitations to an intensity upgrade of the LHC complex. In order to be able to reduce the SPS impedance, its main contributors need to be identified. An impedance model for the SPS has been gathered from theoretical calculations, electromagnetic simulations and bench measurements of single SPS elements. The current model accounts for the longitudinal and transverse impedance of the kickers, the horizontal and vertical electrostatic beam position monitors, the RF cavities and the 6.7 km beam pipe. In order to assess the validity of this model, macroparticle simulations of a bunch interacting with this updated SPS impedance model are compared to measurements performed with the SPS beam.

 
TUOAMH01 First Cleaning with LHC Collimators 1237
 
  • D. Wollmann, O. Aberle, G. Arnau-Izquierdo, R.W. Assmann, J.-P. Bacher, V. Baglin, G. Bellodi, A. Bertarelli, A.P. Bouzoud, C. Bracco, R. Bruce, M. Brugger, S. Calatroni, F. Caspers, F. Cerutti, R. Chamizo, A. Cherif, E. Chiaveri, P. Chiggiato, A. Dallocchio, R. De Morais Amaral, B. Dehning, M. Donze, A. Ferrari, R. Folch, P. Francon, P. Gander, J.-M. Geisser, A. Grudiev, E.B. Holzer, D. Jacquet, J.B. Jeanneret, J.M. Jimenez, M. Jonker, J.M. Jowett, Y. Kadi, K. Kershaw, L. Lari, J. Lendaro, F. Loprete, R. Losito, M. Magistris, M. Malabaila, A. Marsili, A. Masi, S.J. Mathot, M. Mayer, C.C. Mitifiot, N. Mounet, E. Métral, A. Nordt, R. Perret, S. Perrollaz, C. Rathjen, S. Redaelli, G. Robert-Demolaize, S. Roesler, A. Rossi, B. Salvant, M. Santana-Leitner, I. Sexton, P. Sievers, T. Tardy, M.A. Timmins, E. Tsoulou, E. Veyrunes, H. Vincke, V. Vlachoudis, V. Vuillemin, Th. Weiler, F. Zimmermann
    CERN, Geneva
  • I. Baishev, I.A. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
 
 

The LHC has two dedicated cleaning insertions: IR3 for momentum cleaning and IR7 for betatron cleaning. The collimation system has been specified and built with tight mechanical tolerances (e.g. jaw flatness ~ 40 μm) and is designed to achieve a high accuracy and reproducibility of the jaw positions. The practically achievable cleaning efficiency of the present Phase-I system depends on the precision of the jaw centering around the beam, the accuracy of the gap size and the jaw parallelism against the beam. The reproducibility and stability of the system is important to avoid the frequent repetition of beam based alignment which is currently a lengthy procedure. Within this paper we describe the method used for the beam based alignment of the LHC collimation system, its achieved accuracy and stability and its performance at 450GeV.

 

slides icon

Slides

 
WEPD090 Design Concepts for RF-DC Conversion in Particle Accelerator Systems 3308
 
  • F. Caspers, M. Betz, A. Grudiev
    CERN, Geneva
  • H. Sapotta
    University of Applied Sciences Karlsruhe, Karlsruhe
 
 

In many particle accelerators considerable amounts of RF power reaching the megawatt level are converted into heat in dummy loads. After an overview of RF power in the range 200 MHz to 1 GHz dissipated at CERN we discuss several developments that had come up in the past using vacuum tube technology for RF-DC conversion. Amongst those the developments the cyclotron wave converter CWC appears most suitable. With the availability of powerful Schottky diodes the solid state converter aspect has to be addressed as well. One of the biggest problems of Schottky diode based structures is the junction capacity. GaAs and GaN Schottky diodes show a significant reduction of this junction capacity as compared to silicon. Small rectenna type converter units which had been already developed for microwave powered helicopters can be used in waveguides or with coaxial power dividers.

 
WEPE022 CLIC Energy Scans 3395
 
  • D. Schulte, R. Corsini, B. Dalena, J.-P. Delahaye, S. Döbert, G. Geschonke, A. Grudiev, J.B. Jeanneret, E. Jensen, P. Lebrun, Y. Papaphilippou, L. Rinolfi, G. Rumolo, H. Schmickler, F. Stulle, I. Syratchev, R. Tomás, W. Wuensch
    CERN, Geneva
  • E. Adli
    University of Oslo, Oslo
 
 

The physics experiments at CLIC will require that the machine scans lower than nominal centre-of-mass energy. We present different options to achieve this and discuss the implications for luminosity and the machine design.

 
WEPE032 Recent Progress on a Manifold Damped and Detuned Structure for CLIC 3425
 
  • V.F. Khan, A. D'Elia, R.M. Jones
    UMAN, Manchester
  • A. Grudiev, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

Our earlier design* for an accelerating structure to suppress the wakefields in the CLIC main accelerating cavities has been modified. This structure combines strong detuning of the cell frequencies with waveguide-like damping by providing the structure with four attached manifolds which loosely couple a portion of the wakefields from each cell. The amended geometry reduces the surface pulse temperature heating by approximately 20%. We report on the overall parameters of the fundamental mode, together with details on damping higher order dipole modes. In order to adequately suppress the wakefield we interleave the frequencies of eight successive structures.


* Khan and Jones, TU5PFP007, PAC'09, Vancouver, Canada 2009.

 
WEPE089 Design Optimisation for the CLIC Damping Rings 3554
 
  • Y. Papaphilippou, F. Antoniou, M.J. Barnes, S. Bettoni, S. Calatroni, P. Chiggiato, R. Corsini, A. Grudiev, R. Maccaferri, M. Modena, L. Rinolfi, G. Rumolo, D. Schoerling, D. Schulte, M. Taborelli, A. Vivoli
    CERN, Geneva
  • E.B. Levichev, S.V. Sinyatkin, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

The CLIC damping rings should produce the ultra-low emittance necessary for the high luminosity performance of the collider. This combined to the high bunch charge present a number of beam dynamics and technical challenges for the rings. Lattice studies have been focused on low emittance cells with optics that reduce the effect Intra-beam scattering. The final beam emittance is reached with the help of super-conducting damping wigglers. Results from recent simulations and prototype measurements are presented, including a detailed absorption scheme design. Collective effects such as electron cloud and fast ion instability can severely limit the performance and mitigation techniques have been identified and tested. Tolerances for alignment and technical system design such as kickers, RF cavities, magnets and vacuum have been finally established.

 
THPEA013 Advances in X-band TW Accelerator Structures Operating in the 100 MV/m Regime 3702
 
  • T. Higo, Y. Higashi, S. Matsumoto, K. Yokoyama
    KEK, Ibaraki
  • C. Adolphsen, V.A. Dolgashev, A. Jensen, L. Laurent, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Döbert, A. Grudiev, G. Riddone, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated basically using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One goal has been to refine the essential parameters and fabrication procedures needed to realize such high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that surface temperature rise during the pulses be higher, which may increase the breakdown rate. Structures with heavy damping will be tested in late 2009/early 2010, and this paper will present these results together with some of the earlier results from non-damped structures and structures built with a quadrant geometry.