A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Flanagan, G.

Paper Title Page
MOPEB054 Modeling the High-Field Section of a Muon Helical Cooling Channel 391
 
  • A.V. Zlobin, E.Z. Barzi, V.S. Kashikhin, M.J. Lamm, V. Lombardo, M.L. Lopes, M. Yu
    Fermilab, Batavia
  • G. Flanagan, R.P. Johnson, S.A. Kahn, M. Turenne
    Muons, Inc, Batavia
 
 

The Helical Cooling Channel (HCC) is a technique proposed for six-dimensional (6D) cooling of muon beams. The HCC for muon collider and some other applications is usually divided into several sections each with progressively stronger fields, smaller aperture, and shorter helix period to achieve the optimal muon cooling rate. Novel magnet design concepts based on simple coils arranged in a helical solenoid configuration have been developed to provide HCC magnet systems with the desired parameters. The level of magnetic field in the HCC high-field sections suggests using a hybrid coil structure with High Temperature Superconductors (HTS) in the innermost coil layers and Nb3Sn superconductor in the outer coil layers. The development of the concepts and engineering designs of hybrid helical solenoids based on advanced superconductor technologies, with special emphasis on the use of HTS for high fields at low temperature is the key step towards a practical HCC. This paper describes the conceptual designs and parameters of a short HTS model of a hybrid helical solenoid, and discusses the structural materials choices, fabrication techniques, and first test results.

 
MOPEB055 YBCO Conductor Technology for High Field Muon Cooling Magnets 394
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson, M. Turenne
    Muons, Inc, Batavia
  • F. Hunte, J. Schwartz
    North Carolina State University, Raleigh, North Carolina
 
 

YBCO superconductors originally developed for high temperature operation carry significant critical current even in the presence of extremely high magnetic field when operated at low temperature. The final stage of phase space cooling for a muon collider uses a solenoid magnet with fields approaching 50 T. As part of an R&D effort we present measurements of mechanical and electromechanical properties of the YBCO conductor. We examine the critical current verses magnet field angle at 4.2 K in a magnetic field. Quench properties of the conductor such as minimum quench energy threshold and quench propagation velocity will be measured to establish safe operational conductions for the muon cooling magnets. In this paper we describe a conceptual picture for a high field solenoid to be used for muon phase space cooling that incorporates these low temperature properties of YBCO.

 
TUPEB023 High Gradient Final Focusing Quadrupole for a Muon Collider 1569
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson
    Muons, Inc, Batavia
 
 

To achieve the high luminosity required for a muon collider strong quadrupole magnets will be needed for the final focus in the interaction region. These magnets will be located in regions with space constraints imposed both by the lattice and the collider detector. There are significant beam related backgrounds from muon decays and synchrotron radiation which create unwanted particles which can deposit significant energy in the magnets of the final focus region of the collider. This energy deposition results in the heating of the magnet which can cause it to quench. To mitigate the effects of heating from the energy deposition shielding will need to be included within the magnet forcing the aperture to be larger than desired and consequently reducing the gradient. We propose to use exotic high magnetization materials for pole tips to increase the quadrupole gradient.

 
WEPE072 Incorporating RF into a Muon Helical Cooling Channel 3509
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
  • V.S. Kashikhin, M.L. Lopes, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia
 
 

A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling for muon beams. The energy lost by muons traversing the gas absorber needs to be replaced by inserting RF cavities into the HCC lattice. Replacing the substantial muon energy losses using RF cavities with reasonable gradients will require a significant fraction of the channel length be devoted to RF. However to provide the maximum phase space cooling and minimum muon losses, the HCC should have a short period and length. In this paper we examine an approach where each HCC cell has an RF cavity imbedded in the aperture with the magnetic coils are split allowing for half of the cell length to be available for the RF coupler and other services.

 
THPD074 Using Project X as a Proton Driver for Muon Colliders and Neutrino Factories 4452
 
  • G. Flanagan, R.J. Abrams, C.M. Ankenbrandt, M.A.C. Cummings, R.P. Johnson
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia
 
 

The designs of accelerator systems that will be needed to transform Fermilab's Project X into a high-power proton driver for a muon collider and/or a neutrino factory are discussed. These applications require several megawatts of beam power delivered in tens or hundreds of short multi-GeV bunches per second, respectively. Project X may require a linac extension to higher energy for this purpose. Other major subsystems that are likely to be needed include storage rings to accumulate and shorten the proton bunches and an external beam combiner to deliver multiple bunches simultaneously to the pion production target.