A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Edgecock, T.R.

Paper Title Page
MOPEA021 PAMELA Overview and Status 112
 
  • K.J. Peach, J.H. Cobb, S.L. Sheehy, H. Witte, T. Yokoi
    JAI, Oxford
  • M. Aslaninejad, M.J. Easton, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow, H.L. Owen, S.C. Tygier
    UMAN, Manchester
  • C.D. Beard, P.A. McIntosh, S.M. Pattalwar, S.L. Smith, S.I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N. Bliss, T.J. Jones, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire
  • T.R. Edgecock, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • I.S.K. Gardner, D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • M.A. Hill
    GIROB, Oxford
  • C. Johnstone
    Fermilab, Batavia
  • B. Jones, B. Vojnovic
    Gray Institute for Radiation Oncology and Biology, Oxford
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

The status of PAMELA (Particle Accelerator for MEdicaL Applications) ' an accelerator for proton and light ion therapy using a non-scaling FFAG (ns-FFAG) accelerator ' is reviewed and discussed.

 
TUPEC058 Beam Dynamics in NS-FFAG EMMA with Dynamical Maps 1856
 
  • Y. Giboudot, R. Nilavalan
    Brunel University, Middlesex
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Wolski
    The University of Liverpool, Liverpool
 
 

The Non Scaling Fixed Field Alternating Gradient EMMA has a compact linear lattice. Effect of Fringe Field on the beam has to be studied carefully. A numerical magnetic field map is generated by magnet measurements or magnet design softwares. We developed a technique that produces from the numerical field map, a dynamical map for a particle travelling in the entire EMMA cell for a reference energy without acceleration. Since the beam dynamics change with energy, a set of maps have been produce with different reference energies between 10 and 20MeV. For each reference energy, simulated tune and time of flight (TOF) have been compared with results in Zgoubi - tracking directly through numerical field map. The range of validity of a single map has been investigated by tracking particle with large energy deviation. From that, a sensible acceleration scheme has been implemented.


yoel.giboudot@stfc.ac.uk

 
THXMH01 Commissioning of the EMMA Non-Scaling FFAG 3593
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
 
 

EMMA is the world's first non-scaling fixed field alternating gradient accelerator and is being constructed at the STFC Daresbury Laboratory. Experience from the initial commissioning phases (from early 2010) will be reported and lessons for future machines of a similar type will be discussed. The present experimental status and future plans will also be reported.

 

slides icon

Slides

 
THPEC089 Overview of Solid Target Studies for a Neutrino Factory 4263
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • J.J. Back
    University of Warwick, Coventry
  • J.R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • C.N. Booth, G.P. Skoro
    Sheffield University, Sheffield
  • S.J. Brooks
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The UK programme of high power target developments for a Neutrino Factory is centred on the study of high-Z materials (tungsten, tantalum). A description of lifetime shock tests on candidate materials is given as part of the research into a solid target solution. A fast high current pulse is applied to a thin wire of the sample material and the lifetime measured from the number of pulses before failure. These measurements are made at temperatures up to ~2000 K. The stress on the wire is calculated using the LS-DYNA code and compared to the stress expected in the real Neutrino Factory target. It has been found that tantalum is too weak to sustain prolonged stress at these temperatures but a tungsten wire has reached over 26 million pulses (equivalent to more than ten years of operation at the Neutrino Factory). An account is given of the optimisation of secondary pion production from the target and the issues related to mounting the target in the muon capture solenoid and target station are discussed.

 
THPEC090 The EMMA Non-scaling FFAG 4266
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • C.D. Beard, J.A. Clarke, S.A. Griffiths, C. Hill, S.P. Jamison, J.K. Jones, A. Kalinin, K.B. Marinov, N. Marks, P.A. McIntosh, B.D. Muratori, J.F. Orrett, Y.M. Saveliev, B.J.A. Shepherd, R.J. Smith, S.L. Smith, S.I. Tzenov, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • N. Bliss, B.G. Martlew, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire
  • M.K. Craddock
    UBC & TRIUMF, Vancouver, British Columbia
  • J.L. Crisp, C. Johnstone
    Fermilab, Batavia
  • Y. Giboudot
    Brunel University, Middlesex
  • E. Keil
    CERN, Geneva
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • F. Méot
    CEA, Gif-sur-Yvette
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • S.L. Sheehy, T. Yokoi
    JAI, Oxford
 
 

The Electron Model for Many Applications (EMMA) will be the World's first non-scaling FFAG and is under construction at the STFC Daresbury Laboratory in the UK. Construction is due for completion in March 2010 and will be followed by commissioning with beam and a detailed experimental programme to study the functioning of this type of accelerator. This paper will give an overview of the motivation for the project and describe the EMMA design and hardware. The first results from commissioning will be presented in a separate paper.

 
THPEC091 Tungsten Behavior at High Temperature and High Stress 4269
 
  • G.P. Skoro, C.N. Booth
    Sheffield University, Sheffield
  • J.J. Back
    University of Warwick, Coventry
  • J.R.J. Bennett, S.A. Gray, A.J. McFarland
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
 
 

Recently reported results on the tungsten lifetime/fatigue tests under conditions expected in the Neutrino Factory target have strengthened the case of solid target option for a Neutrino Factory. This paper gives description of the detailed measurements of the tungsten properties at high temperature and high stress. We have performed extensive set of measurements of the surface displacement and velocity of the tungsten wires that were stressed by passing a fast, high current pulse through a thin sample. Radial and longitudinal oscillations of the wire were measured by a Laser Doppler Vibrometer. The wire was operated at temperatures of 300-2500 K by adjusting the pulse repetition rate. In doing so we have tried to simulate the conditions (high stress and temperature) expected at the Neutrino Factory. Most important result of this study is an experimental confirmation that strength of tungsten remains high at high temperature and high stress. The experimental results have been found to agree very well with LS-DYNA modelling results.

 
THPE034 A Non-Scaling FFAG Gantry Design for the PAMELA Project 4593
 
  • R.J.L. Fenning, A. Khan
    Brunel University, Middlesex
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

A gantry is required for the PAMELA project using non-scaling Fixed Field Alternating Gradient (NS-FFAG) magnets. The NS-FFAG principle offers the possibility of a gantry much smaller, lighter and cheaper than conventional designs, with the added ability to accept a wide range of fast changing energies. This paper will build on previous work to investigate a design which could be used for the PAMELA project.