A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dressler, O.

Paper Title Page
TUPEC026 Determination of the Magnetic Characteristics in the Injection Septum for the Metrology Light Source 1773
 
  • O. Dressler, M.V. Hartrott
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • N. Hauge
    Danfysik A/S, Jyllinge
 
 

The pre-accelerator microtron supplies an electron beam at 105 MeV for the Metrology Light Source (MLS) of the Physikalisch-Technische Bundesanstalt (PTB) in Berlin. The beam is delivered via the transfer line to the injection septum and then into the storage ring. This septum magnet has its stainless steel vacuum beam pipe placed inside a laminated silicon iron magnet core. Hence, the pulsed magnetic field (half sine) used for the beam deflection must propagate through the thin metallic beam pipe. During the commissioning of the injection process, it became apparent that the calculated nominal pulse current for this energy and geometry had to be increased by 30 % to achieve proper beam transfer and accumulation. Two problems were apparent. Firstly, the injected beam trajectory had to be set at an angle away from the main beam axis. Secondly, the beam transfer from the septum entrance to exit was disturbed. As a first measure, the septum current pulse length was extended from 35 to 107 μs. Further on, the septum magnet was insulated from the transfer line beam pipe by a ceramic brake. This paper reports on measurements of pulsed magnetic fields inside the septum magnet.


* Commissioning and Operation of the Metrology Light Source, J. Feikes et al., BESSY, Berlin, Germany; R. Klein, G. Ulm, Physikalisch-Technische Bundesanstalt, Berlin, Germany; EPAC08, Genoa, Italy.