A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dewa, H.

Paper Title Page
MOPE006 Feasibility Study of Radial EO-Sampling Monitor to Measure 3D Bunch Charge Distributions 963
 
  • H. Tomizawa, H. Dewa, H. Hanaki, S. Matsubara, A. Mizuno, T. Taniuchi, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
  • T. Ishikawa, N. Kumagai
    RIKEN/SPring-8, Hyogo
  • K. Lee, A. Maekawa, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
 
 

We are developing a single-shot and non-destructive 3D bunch charge distribution (BCD) monitor based on Electro-Optical (EO) sampling with a manner of spectral decoding for XFEL/SPring-8. For fine beam tuning, 3D-BCD is often required to measure in real-time. The main function of this bunch monitor can be divided into longitudinal and transverse detection. For the transverse detection, eight EO-crystals surround the beam axis azimuthally, and a linear-chirped probe laser pulse with a hollow shape passes thorough the crystal. The polarization axis of the probe laser should be radially distributed as well as the Coulomb field of the electron bunches. Since the signal intensity encoded at each crystal depends on the strength of the Coulomb field at each point, we can detect the transverse BCD. In the longitudinal detection, we utilize a broadband square spectrum (> 400 nm at 800 nm of a central wavelength) so that the temporal resolution is < 30 fs if the pulse width of probe laser is 500 fs. In order to achieve 30-fs temporal resolution, we use an organic EO material, DAST crystal, which is transparent up to 30 THz. We report the first experimental results of this 3D-BCD monitor.

 
THPEC025 First Emission of Novel Photocathode Gun Gated by Z-polarized Laser Pulse 4101
 
  • H. Tomizawa, H. Dewa, H. Hanaki, A. Mizuno, T. Taniuchi
    JASRI/SPring-8, Hyogo-ken
 
 

We have developed a laser-induced Schottky-effect-gated photocathode gun since 2006. This new type of gun utilizes a laser's coherency to realize a compact laser source using Z-polarization of the IR laser on the cathode. This Z-polarization scheme reduces the laser pulse energy by reducing the cathode work function due to Schottky effect. Before this epoch-making scheme, photocathode guns had never utilized laser's coherency. A hollow laser incidence is applied with a hollow convex lens that is focused after passing the beam through a radial polarizer. According to our calculations (convex lens: NA=0.15), a Z-field of 1 GV/m needs 1.26 MW at peak power for the fundamental wavelength (792 nm) and 0.316 MW for the SHG (396 nm). Therefore, we expect that this laser-induced Schottky emission requires just a compact femtosecond laser oscillator as a laser source. Besides, a dichromatic laser scheme (photo-exciting: 780 nm; gating: 30 um) should be applied to polarized electron sources for International Linear Collider (ILC). We report the first feasibility study of this laser-induced Schottky-effect on several metal photocathodes by comparing radial and azimuthal polarizations.