A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Delferriere, O.     [Delferrière, O.]

Paper Title Page
MOPEB024 A Homogeneous Superconducting Combined Multipole Magnet for the Large Acceptance Spectrometer S3, based on Flat Racetrack Coils 328
 
  • O. Delferrière, D. Boutin, A. Dael, A. Drouart, C. Mayri, J. Payet, J.-M. Rifflet
    CEA, Gif-sur-Yvette
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the very high intensity heavy ion stable beams of SPIRAL2. It will be set-up at the exit of the linear accelerator LINAG at GANIL (Caen, France). It will include a target resistant to very high intensities, a first stage momentum achromat for primary beam suppression, a second stage mass spectrometer and a dedicated detection system. This mass spectrometer includes a set of four large aperture quadrupole triplets with embedded multipolar corrections. These magnets are a combination of three multipoles which could be realized with superconductor wound in flat racetrack coils. To enable the primary beam extraction one triplet has to be opened on one side, which requires a careful design of such a multipolar magnet. This paper describes the opened multipole geometry. It is adapted to large apertures as demonstrated by Opera 3d© magnetic simulations [2], including harmonic analysis and integral field homogeneity.

 
MOPD026 Unsegmented vs. Segmented 4-Vane RFQ: Theory and Cold Model Experiments 735
 
  • A. France, O. Delferrière, M. Desmons, Y. Le Noa, J. Novo, O. Piquet
    CEA, Gif-sur-Yvette
 
 

The RF design of a RFQ should satisfied several conditions, namely: voltage profile required by beam dynamics, a tunable structure, RF stability and reasonable sensitivity to possible perturbations induced by power operation. Voltage profile may be obtained either by a dedicated profiling of 2D cross-section and/or slug tuner adjustment. Tunability is directly related to spatial distribution of tuners. RF stability requires sufficient separation between accelerating quadrupole mode and (i) adjacent quadrupole modes, or (ii) adjacent dipole modes. Quadrupole modes separation is directly related to RFQ length, and can be increased if necessary via segmentation; position of dipole modes spectrum w.r.t. quadrupole spectrum may be adjusted using rod stabilizers inserted at RFQ ends and on either side of coupling circuits. We present a thorough comparison of these two options for a 6-meter long structure at 352 MHz, and show they both lead to a tunable structure. The design includes 3D electromagnetic simulation and application of transmission line to tuning. The sensitivity of both designs to perturbations is also evaluated.

 
MOPD027 The RF Design of the Linac4 RFQ 738
 
  • O. Piquet, O. Delferrière, M. Desmons, A. France
    CEA, Gif-sur-Yvette
  • A.M. Lombardi, C. Rossi, M. Vretenar
    CERN, Geneva
 
 

In the Linac 4 and the SPL, a 3 MeV RFQ is required to accelerate the H- beam from the ion source to the DTL input energy. While the 6-meter long IPHI RFQ was initially chosen for this application, a CERN study* suggested that a dedicated, shorter 3-meter RFQ might present several advantages. The 2D cross-section is optimized for lower power dissipation, while featuring simple geometrical shape suitable for easy machining. RF stability is evaluated using a 4-wire transmission model and 3D simulations, taking electrode modulation into account. The resulting RFQ is intrinsically stable and do not require rod stabilizers. End circuits are tuned with dedicated rods. RF power is fed via a ridged waveguide and a slot iris. Vacuum port assemblies are positioned prior to brazing to minimize RF perturbation. The 32 tuning slugs form a set of stable sampling, able to tune 9 modes. Tuner parameters are derived from bead-pull accuracy specification and fabrication tolerances. Signals delivered by pickup loops inserted in 16 of these tuners will be used to reconstruct the voltage profile under operation. Thermo-mechanical simulations are used to design temperature control specifications.

 
WEPE001 Optics Studies for the Interaction Region of the International Linear Collider 3338
 
  • R. Versteegen, O. Delferrière, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
 
 

The International Linear Collider reference design is based on a collision scheme with a 14 mrad crossing angle. Consequently, the detector solenoid and the machine axis do not coincide. It provokes a position offset of the beam at the Interaction Point in addition to a beam size growth. These effects are modified by the insertion of the anti-DID (Detector Integrated Dipole) aiming at reducing background in the detector. Furthermore a crab cavity is necessary to restore a 'head on' like collision, leading to higher luminosity. This introduces new beam distortions. In this paper, optics studies and simulations of beam transport in the Interaction Region taking these elements into account are presented. Correction schemes of the beam offset and beam size growth are exposed and their associated tolerances are evaluated.

 
THPD079 Optical Studies for the Super Separator Spectrometer S3 4464
 
  • D. Boutin, M. Authier, F. Dechery, O. Delferrière, A. Drouart, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Amthor, H. Savajols, M.-H. Stodel
    GANIL, Caen
  • S.L. Manikonda, J.A. Nolen
    ANL, Argonne
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper.


[1] A. Drouart et al., Nucl. Phys. A 834 (2010) 747c. [2] SPIRAL2, http://pro.ganil-spiral2.eu/spiral2