A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cheymol, B.

Paper Title Page
MOPE052 Design of the Emittance Meter for the 3 and 12 MeV LINAC4 H~ Beam 1089
 
  • B. Cheymol, E. Bravin, D. Gerard, U. Raich, F. Roncarolo
    CERN, Geneva
 
 

As part of the CERN LHC injector chain upgrade, LINAC4 will accelerate H- ions from 45 keV to 160 MeV. A movable diagnostics test bench will be used to measure the beam parameters during the different construction stages (at 45 keV, 3 MeV and 12 MeV) at first in a laboratory setup and later in the LINAC4 tunnel. Given the beam properties at 3 and 12 MeV, the existing slit-grid system developed for the measurement of the transverse emittance at the source (45 keV) cannot be reused at these higher energies. At 3MeV and above the energy deposition would damage the steel slit in a single LINAC4 pulse. For this reason a new slit has been designed following detailed analytical and numerical simulations for different materials and geometries. The energy deposition patterns as simulated by FLUKA for the different cases are presented in detail. In addition, the choice of SEM grid wires for achieving the required measurement accuracy in terms of material, diameter and spacing, are discussed.

 
MOPE053 Commissioning of the LINAC4 Ion Source Transverse Emittance Meter 1092
 
  • B. Cheymol, E. Bravin, C. Dutriat, A.E. Lokhovitskiy, U. Raich, F. Roncarolo, R. Scrivens, E. Zorin
    CERN, Geneva
 
 

LINAC4 is the first step in the upgrade of the injector chain for the LHC and will accelerate H- ions to 160 MeV. The ion source has initially been installed in a laboratory setup where its commissioning started at the end of 2009. A slit-grid system is used to monitor the transverse emittance at the exit of the source. Measurement results have been compared to analytical and numerical predictions of the system performance, addressing the system resolution, accuracy and sensitivity. This information has been used to improve the design of a new slit-grid system required for commissioning the linac at higher energies.