A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Chen, M.

Paper Title Page
THPD034 Stable Proton Beam Acceleration from a Two-specie Ultrathin Foil Target 4352
 
  • T.P. Yu, M. Chen, A.M. Pukhov
    HHUD, Dusseldorf
  • T.P. Yu
    National University of Defense Technology, Changsha, Hunan
 
 

By using multi-dimensional particle-in-cell simulations, we investigate the stability of proton beam acceleration in a two-specie ultra-thin foil. In this two-specie regime, the lighter protons are initially separated from the heavier carbon ions due to their higher charge-to-mass ratio Z/m. The laser pulse is well-defined so that it doesn't penetrate the carbon ion layer. The Rayleigh-Taylor-like (RT) instability seeded at the very early stage then only degrades the acceleration of the carbon ions which act as a "cushion" for the lighter protons. Due to the absence of proton-RT instability, the produced high quality mono-energetic proton beams can be well collimated even after the laser-foil interaction concludes.

 
WEPEA050 Studies on Higher Order Modes Damper for the 3rd Harmonic Superconducting 2600
 
  • H. Yu
    SSRF, Shanghai
  • M. Chen, Z.Q. Feng, H.T. Hou, J.F. Liu, Z.Y. Ma, D.Q. Mao, B. Yin
    SINAP, Shanghai
 
 

To investigate the higher order mode(HOM) damping in the higher harmonic cavity for Shanghai Synchrotron Radiation Facility(SSRF) when using HOM absorbers,simulations have been done for changing the position and the length as well as the thickness of ferrite of HOM damper. The best values under which the Q value of HOMs can be greatly lowered and the impedance of harmonic cavity will be trapped in the impedance threshold have been found.