A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Chao, Y.-C.

Paper Title Page
WEPEA084 Study of Beam Emittance and Energy Spread Measurements Using SVD and Multiple Flags in the NSLS-II Booster Extraction Beamline 2677
 
  • G.M. Wang, R.P. Fliller, W. Guo, R. Heese, T.V. Shaftan, L.-H. Yu
    BNL, Upton, Long Island, New York
  • Y.-C. Chao
    TRIUMF, Vancouver
 
 

The low beam emittance requirement in the NSLS-II storage ring imposes a very tight constraint on its acceptance. This requires the injected beam emittance to be very small, for which a reliable scheme of measurement to determine the phase space and momentum characteristics of the beam coming out the booster is necessary. The original scheme based on the booster-to-dump transport line was hampered by the difficulty in decoupling betatron oscillation from dispersion, due to high concentration of dipoles and limited number of quads after the booster. This paper will describe the alternative method being planned to use the booster extraction line to measure the beam emittance and energy spread, as well as the associated errors.

 
THPD001 Electron Linac Photo-fission Driver for the Rare Isotope Program at TRIUMF 4275
 
  • S.R. Koscielniak, F. Ames, R.A. Baartman, P.G. Bricault, I.V. Bylinskii, Y.-C. Chao, K. Fong, R.E. Laxdal, M. Marchetto, L. Merminga, A.K. Mitra, I. Sekachev, V.A. Verzilov, V. Zvyagintsev
    TRIUMF, Vancouver
  • A. Chakrabarti, S. Dechoudhury, M. Mondal, V. Naik
    DAE/VECC, Calcutta
 
 

In July 2009 TRIUMF, in collaboration with the University of Victoria and other partners, was awarded Canadian federal government funds for the construction of an electron linear accelerator (e-linac) in support of its expanding rare isotope beam (RIB) program. The project anticipates Provincial funds for the construction of buildings to be announced in June 2010. TRIUMF has embarked on the detailed design for the 10 MeV Injector cryomodule and the first of two 20 MeV Accelerator cryomodules (ACMs), all rated up to 10 mA. The project first stage, ICM and ACM1, providing 25 MeV 4 mA is planned to be completed in November 2013. The injector is being fast tracked in a collaboration with the VECC in Kolkata, India. This paper gives an overview of the facility layout, and accelerator design progress including beam dynamics and cryomodule concept.