A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Caldwell, A.

Paper Title Page
TUPEB030 Frictional Cooling Demonstration Experiment 1590
 
  • D. Greenwald, A. Caldwell
    MPI-P, München
  • Y. Bao
    IHEP Beijing, Beijing
 
 

Simulations of frictional cooling for a muon collider front end scheme show that it is a viable technique for quickly producing colliding beams. The Frictional Cooling Demonstration experiment at the Max Planck Institute for Physics, Munich, aims to demonstrate the working principle of frictional cooling on protons using a 10-cm-long cooling cell. The experiment is nearing the final data taking stages. The status of the experiment is presented along with recent data. Simulation of the experiment setup is also presented.

 
TUPEB031 A Muon Collider Scheme Based on Frictional Cooling 1593
 
  • D. Greenwald, A. Caldwell
    MPI-P, München
  • Y. Bao
    IHEP Beijing, Beijing
 
 

Muon colliders would open new frontiers of investigation in high energy particle physics, allowing precision measurements to be made at the TeV energy frontier. One of the greatest challenges to constructing a muon collider is the cooling of a beam of muons on a timescale comparable to the lifetime of the muon. Frictional cooling holds promise for use in a muon collider scheme. By balancing energy loss to a gas with energy gain from an electric field, a beam of muons is brought to an equilibrium energy in 100s of nanoseconds. A frictional cooling scheme for producing high-luminosity beams for a muon collider is presented.

 
WEPE047 Frictional Cooling for a Slow Muon Source 3452
 
  • Y. Bao
    IHEP Beijing, Beijing
  • A. Caldwell, G.X. Xia
    MPI-P, München
  • D. Greenwald
    MPI für Physics, Muenchen
 
 

Low energy muon beams are useful for a wide range of physics experiments. High quality muon beams are also required for muon colliders and neutrino factories. The frictional cooling method holds promise for delivering slow muon beams with narrow energy spreads. With this technology, we consider the production of a cold muon beam from a surface muon source, such as that at the Paul Scherrer Institute. A cooling scheme based on frictional cooling is outlined. Simulation results show that the efficiency of slow muon production can be raised to 1%, which is significantly higher than current schemes.

 
THPD050 A Proposed Experiment on the Proton Driven Plasma Wakefield Acceleration 4392
 
  • A. Caldwell, G.X. Xia
    MPI-P, München
  • R.W. Assmann, F. Zimmermann
    CERN, Geneva
  • K.V. Lotov
    BINP SB RAS, Novosibirsk
  • A.M. Pukhov
    HHUD, Dusseldorf
 
 

Proton driven plasma wakefield acceleration holds promise to accelerate a bunch of electrons to the energy frontier in a single acceleration channel. To verify this novel idea, a demonstration experiment is now being planned. The idea is to use the high energy proton bunches from the Super Proton Synchrotron (SPS) at CERN, to shoot them into a plasma cell and drive large amplitude of plasma wake. The interactions between the plasma and protons are simulated and the results are presented in this paper.

 
THPD051 Producing Short Proton Bunch for Driving Plasma Wakefield Acceleration 4395
 
  • G.X. Xia, A. Caldwell
    MPI-P, München
 
 

A high energy, intense and short proton bunch can be employed to excite an interesting plasma wakefield for the electron beam acceleration. To excite a large amplitude of plasma wave, a short driver is thus required. In this paper, several proton bunch compression scenarios are analyzed. A magnetic bunch compressor is designed to compress the SPS proton beam for the demonstration experiment at CERN. The simulation results of bunch compression are given.