A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Behrens, C.

Paper Title Page
MOPD088 Resolution Studies of Inorganic Scintillation Screens for High Energy and High Brilliance Electron Beams 906
 
  • G. Kube, C. Behrens
    DESY, Hamburg
  • W. Lauth
    IKP, Mainz
 
 

Luminescent screens are widely used for particle beam diagnostics, especially in transverse profile measurements at hadron machines and low energy electron machines where the intensity of optical transition radiation (OTR) is rather low. The experience from modern linac based light sources showed that OTR diagnostics might fail even for high energetic electron beams because of coherence effects in the OTR emission process. An alternative way to overcome this limitation is to use luminescent screens, especially inorganic scintillators. However, there is only little information about scintillator properties for applications with high energetic electrons. Therefore a test experiment has been performed at the 855 MeV beam of the Mainz Microtron MAMI (University of Mainz, Germany) in order to study the spatial resolution. The results of this experiment will be presented and discussed in view of scintillator material properties and observation geometry.

 
MOPD090 Upgrade and Evaluation of the Bunch Compression Monitor at the Free-electron Laser in Hamburg (FLASH) 912
 
  • C. Behrens, B. Schmidt, S. Wesch
    DESY, Hamburg
  • D. Nicoletti
    Università di Roma I La Sapienza, Roma
 
 

The control and stabilization of RF systems for accelerators has a considerable importance. In case of high-gain free-electron lasers (FEL) with magnetic bunch compressors, the RF phases determine the attainable bunch peak current, which is a relevant parameter for driving the FEL process. In order to measure the bunch peak current in a simple and fast but indirect way, both bunch compressors at FLASH are equipped with compression monitors (BCM) based on pyroelectrical detectors and diffraction radiators (CDR). They provide substantial information to tune the bunch compression and are used for beam-based feedback to stabilize RF phases. This monitor system becomes more important and more challenging after the installation of a third-harmonic RF system for longitudinal phase space linearization in front of the first bunch compressor. In this paper, we describe the hardware upgrade of the bunch compression monitor and show the expected performance by simulations of the CDR source and the radiation transport optics. Particle tracking simulations are used for generation of the simulated BCM-signal for various compression schemes. Comparison with experimental data will be presented.

 
THPD003 Test and Commissioning of the Third Harmonic RF System for FLASH 4281
 
  • E. Vogel, C. Albrecht, N. Baboi, C. Behrens, T. Delfs, J. Eschke, C. Gerth, M.G. Hoffmann, M. Hoffmann, M. Hüning, R. Jonas, J. Kahl, D. Kostin, G. Kreps, F. Ludwig, W. Maschmann, C. Mueller, P. Nommensen, J. Rothenburg, H. Schlarb, Ch. Schmidt, J.K. Sekutowicz
    DESY, Hamburg
  • H.T. Edwards, E.R. Harms, A. Hocker, T.N. Khabiboulline
    Fermilab, Batavia
  • M. Kuhn
    Uni HH, Hamburg
 
 

Ultra short bunches with high peak current are required for efficient creation of high brilliance coherent light at the free electron laser FLASH. They are obtained by a two stage transverse magnetic chicane bunch compression scheme based on acceleration of the beam off the rf field crest. The deviation of the rf field's sine shape from a straight line leads to long bunch tails and reduces the peak current. This effect will be eliminated by adding the Fermilab-built third harmonic superconducting accelerating module operating at 3.9 GHz to linearize the rf field. The third harmonic module also allows for the creation of uniform intensity bunches of adjustable length that is needed for seeded operation. This paper summarizes the results from the first complete rf system test at the crymodule test bench at DESY and the first experience gained operating the system with beam in FLASH.