A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Beard, K.B.

Paper Title Page
MOPEA043 Quasi-Monoenergetic Photon Source Based on Electron-Positron In-Flight Annihilation 169
 
  • A. Afanasev, R.J. Abrams, C.M. Ankenbrandt, K.B. Beard, R.P. Johnson, T.J. Roberts, C. Y. Yoshikawa
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia
 
 

We study electron-positron in-flight annihilation as a potential source of quasi-monoenergetic photon (or gamma-ray) beams. A high-intensity tunable-energy (1.5 MeV to 15 MeV) gamma source has many potential uses in medical, industrial and security applications. Several electron-positron collision geometries are considered: a) head-on; b) collinear; and c) positron beam incident on a fixed electron target. We analyze advantages of each of the geometries in order to optimize parameters of the generated gamma-ray beams.

 
MOPEA045 Positron Production for a Compact Tunable Intense Gamma Ray Source 175
 
  • C. Y. Yoshikawa, R.J. Abrams, A. Afanasev, C.M. Ankenbrandt, K.B. Beard
    Muons, Inc, Batavia
  • D.V. Neuffer
    Fermilab, Batavia
 
 

A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons. We present various positron production methods that are compatible with this approach for producing the intense beam of gammas.

 
TUPEC063 Particle Tracking in Matter-dominated Beam Lines 1871
 
  • T.J. Roberts, K.B. Beard
    Muons, Inc, Batavia
  • S. Ahmed, D. Huang, D.M. Kaplan, L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
 

The G4beamline program* is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit**, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at: http://g4beamline.muonsinc.com


* http://g4beamline.muonsinc.com
** http://geant4.cern.ch

 
THOAMH01 Recirculating Linear Accelerators for Future Muon Facilities 3602
 
  • S.A. Bogacz
    JLAB, Newport News, Virginia
  • K.B. Beard, R.P. Johnson
    Muons, Inc, Batavia
 
 

Neutrino Factories and Muon Colliders require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed Linac quadrupoles and arc magnets to allow the maximum number of passes. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

 

slides icon

Slides