A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bartmann, W.

Paper Title Page
TUPEB063 Performance Studies for Protection against Asynchronous Dumps in the LHC 1662
 
  • T. Kramer
    EBG MedAustron, Wr. Neustadt
  • W. Bartmann, C. Bracco, B. Goddard, M. Meddahi
    CERN, Geneva
 
 

The LHC beam dump system has to safely dispose all beams in a wide energy range of 450 GeV to 7 TeV. A 3 μs abort gap in the beam structure for the switch-on of the extraction kicker field ideally allows a loss free extraction under normal operating conditions. However, a low number of asynchronous beam aborts is to be expected from reliability calculations and from the first year's operational experience with the beam dump kickers. For such cases, MAD-X simulations including all optics and alignment errors have been performed to determine loss patterns around the LHC as a function of the position of the main protection elements in interaction region six. Special attention was paid to the beam load on the tungsten collimators which protect the triplets in the LHC experimental insertions, and the tracking results compared with semi-analytical numerical estimates. The simulations are also compared to the results of beam commissioning of these protection devices.

 
TUPEB066 Injection Beam Loss and Beam Quality Checks for the LHC 1671
 
  • B. Goddard, V. Baggiolini, W. Bartmann, C. Bracco, L.N. Drosdal, E.B. Holzer, V. Kain, D. Khasbulatov, N. Magnin, M. Meddahi, A. Nordt, M. Sapinski
    CERN, Geneva
  • M. Vogt
    DESY, Hamburg
 
 

The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed.

 
TUPEB067 Beam Commissioning of the Injection Protection Systems of the LHC 1674
 
  • W. Bartmann, R.W. Assmann, C. Bracco, B. Dehning, B. Goddard, E.B. Holzer, V. Kain, M. Meddahi, A. Nordt, S. Redaelli, A. Rossi, M. Sapinski, D. Wollmann
    CERN, Geneva
 
 

The movable LHC injection protection devices in the SPS to LHC transfer lines and downstream of the injection kicker in the LHC were commissioned with low-intensity beam. The different beam-based alignment measurements used to determine the beam centre and size are described, together with the results of measurements of the transverse beam distribution at large amplitude. The system was set up with beam to its nominal settings and the protection level against various failures was determined by measuring the transmission and transverse distribution into the LHC as a function of oscillation amplitude. Beam losses levels for regular operation were also extrapolated. The results are compared with the expected device settings and protection level, and the implications for LHC operation discussed.

 
TUPEB068 Aperture Measurements of the LHC Injection Regions and Beam Dump Systems 1677
 
  • B. Goddard, W. Bartmann, C. Bracco, V. Kain, M. Meddahi, V. Mertens, J.A. Uythoven
    CERN, Geneva
 
 

The commissioning of the beam transfer systems for LHC included detailed aperture measurements in the injection regions and for the beam dump systems. The measurements, mainly single pass, were made using systematic scans of different oscillation phases and amplitudes, and the results compared with the expectations from the physical aperture model of the LHC. In this paper the measurements and results are presented and compared with the specified apertures in these critical areas.

 
THPEB027 Transfer Lines to and from PS2 3942
 
  • C. Heßler, W. Bartmann, M. Benedikt, B. Goddard, M. Meddahi, J.A. Uythoven
    CERN, Geneva
 
 

Within the scope of the LHC injector upgrade, it is proposed to replace the present injector chain by new accelerators, Linac4, SPL and PS2, for which new beam transfer lines are required. The beam properties and requirements for each of the lines are summarized. The original design of the beam lines has been fully reconsidered due to the very demanding constraints on the beam line layouts at the PS2 injection / extraction regions and a new straight section of the PS2 which led to a much improved beam line geometry. The relevant modifications and optics designs are described and a preliminary specification of the beam line equipment is also given.

 
THPEB028 A Doublet-based Injection-extraction Straight Section for PS2 3945
 
  • W. Bartmann, B. Goddard, C. Heßler
    CERN, Geneva
 
 

A new design of the injection-extraction straight section for PS2 has been made, motivated by problematic intersections of the PS2 transfer lines, potential gain in drift length for the beam transfer systems and reduction of the total straight section length. The new straight contains two injection systems with separate beam lines and three extraction systems to the SPS sharing a single beam line, together with an extracted "waste" beam from the H- injection with its line to a beam dump. A symmetric doublet structure was chosen, with a reduced number of cells and quadrupoles. The optics solutions are described and the matching and tuning flexibility investigated. The implications for the different injection and extraction systems and transfer lines will be discussed, together with the specific issues of integration into the overall lattice.

 
THPE021 Comparison of PS2 Lattices with Different Geometries 4557
 
  • Y. Papaphilippou, W. Bartmann, H. Bartosik, M. Benedikt, B. Goddard, A. Lachaize
    CERN, Geneva
  • Y. Senichev
    FZJ, Jülich
 
 

The PS2 ring is designed with negative momentum compaction arc cells and doublet straights. In this paper, different lattice geometries are considered. In particular, a two-fold symmetric lattice with dispersion suppressors and a 3-fold symmetric one with resonant arc cells are compared with respect to their optics properties, and ability to satisfy space and magnet constraints. The tuning flexibility of rings based on these two options is presented. Finally, the impact of different geometries on resonance excitation and dynamic aperture is evaluated.

 
THPE022 Linear Optimization and Tunability of the PS2 Lattice 4560
 
  • H. Bartosik, W. Bartmann, M. Benedikt, B. Goddard, Y. Papaphilippou
    CERN, Geneva
 
 

The PS2 lattice, based on Negative Momentum Compaction (NMC) arc cells is being optimized in order to accommodate a new all-doublet long-straight section (LSS) design. Apart from smoothing the optics and enabling different tuning solutions for H- injection, the optimization focuses on increasing the available magnet-to-magnet drift space and reducing the quadrupole types and strengths. The variation of lattice parameters for a wide range of working points is presented.