A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Artikova, S.T.

Paper Title Page
WEPEB075 Beam Halo Studies for CTF3 2872
 
  • S.T. Artikova
    MPI-K, Heidelberg
  • R.B. Fiorito, A.G. Shkvarunets, H.D. Zhang
    UMD, College Park, Maryland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

Beam halo can have severe effects on the performance of high energy accelerators. It reduces the experimental throughput, may lead to noise in the experiments, or even damaging of accelerator components. In order to understand and ideally control the formation and evolution of beam halo, detailed simulation studies are required. In this contribution halo generation mechanisms and the underlying physical principles are first presented, before the particular case of the CLIC Test Facility (CTF3) is discussed in detail. Analytical, numerical and simulation studies are combined to estimate the relevant sources of halo formation and to study halo propagation in the different CTF3 sections.