A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ams, A.

Paper Title Page
WEPD039 First Magnetic Tests of a Superconducting Damping Wiggler for the CLIC Damping Rings 3174
 
  • D. Schoerling, M. Karppinen, R. Maccaferri
    CERN, Geneva
  • A. Ams
    IMFD, Freiberg
  • A. Bernhard, P. Peiffer
    KIT, Karlsruhe
  • R. Rossmanith
    FZK, Karlsruhe
 
 

Two damping rings (e+, e-) are foreseen for the CLIC injection chain. In each damping ring 76 two meter long wigglers will be installed. The short period (40-50 mm), combined with a gap larger than 14 mm and a requested field in the mid-plane BPeak > 2 T requires the usage of superconducting technologies to meet these requirements. To demonstrate the feasibility of this wiggler design a short-model vertical racetrack wiggler (40 mm period; 16 mm gap) was built and successfully tested at CERN. The wiggler carries a current of 730 A and 910 A and reaches a mid-plane peak field of Bpeak = 2 T and Bpeak = 2.5 T at 4.2 K and 1.9 K, respectively. The results show that the wiggler model meets the magnetic requirements of the CLIC damping rings at 1.9 K. The paper will also discuss the improvements we propose to enhance the performance in order to meet the CLIC specifications also at 4.2 K.