

Disruptor
Using High Performance,
Low Latency Technology in the
CERN Control System

21/10/2015 2

ICALEPCS 2015

21/10/2015 3

The problem at hand

WEB3O03

21/10/2015 4

• CESAR is used to control the devices in
CERN experimental areas

The problem at hand
Motor Detector Power Converter

CESAR
Server

WEB3O03

21/10/2015 5

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

WEB3O03

21/10/2015 6

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

• The business logic on the CESAR server
combines the data coming from these streams
to calculate device states

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

State
Device

A

State
Device

B

State
Device

C

WEB3O03

21/10/2015 7

• CESAR is used to control the devices in
CERN experimental areas

• These devices produce 2500 event streams

• The business logic on the CESAR server
combines the data coming from these streams
to calculate device states

• This concurrent processing must be properly
synchronized

The problem at hand
Motor Detector Power Converter

CESAR
Server

x 2500

State
Device

A

State
Device

B

State
Device

C

WEB3O03

21/10/2015 WEB3O03 8

What happens when all flows converge?

21/10/2015 WEB3O03 9

21/10/2015 WEB3O03 10

21/10/2015 WEB3O03 11

21/10/2015 WEB3O03 12

1- Some background about the Disruptor

21/10/2015 WEB3O03 13

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

21/10/2015 WEB3O03 14

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

21/10/2015 WEB3O03 15

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

• Challenges the idea that “CPUs are not getting any faster”

21/10/2015 WEB3O03 16

1- Some background about the Disruptor

• Created by LMAX, a trading company, to build a high performance Forex
exchange

• Is the result of different trials and errors

• Challenges the idea that “CPUs are not getting any faster”

• Designed to take advantage of the architecture of modern CPUs, following
the concept of “mechanical sympathy”

21/10/2015 WEB3O03 17

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 18

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L1 Cache 1 ns 64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 19

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L1 Cache

L2 Cache

1 ns

3 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 20

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L3 Cache

L1 Cache

L2 Cache

1 ns

3 ns

12 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 21

Feed the cores – avoid cache misses

So
ck

et

Core 1

L1 Cache

L2 Cache

L3 Cache

Core 2

L1 Cache

L2 Cache

RAM

L3 Cache

L1 Cache

L2 Cache

RAM

1 ns

3 ns

12 ns

65 ns

64 KB

256 KB

1 to 20 MB

Socket Interconnect

21/10/2015 WEB3O03 22

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X

21/10/2015 WEB3O03 23

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X

21/10/2015 WEB3O03 24

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’ X

21/10/2015 WEB3O03 25

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 26

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 27

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 28

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y X Y

1 cache line = 64 bytes
(on modern x86)

X’

Y X’

X

21/10/2015 WEB3O03 29

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y

1 cache line = 64 bytes
(on modern x86)

The solution?

21/10/2015 WEB3O03 30

Avoiding false sharing

Core 1

L1 /
L2

L3

Socket Interconnect

1 to 3 ns

12 ns

40 ns

Core 2

X Y

1 cache line = 64 bytes
(on modern x86)

The solution? Padding

P P P P P P P P P P

21/10/2015 WEB3O03 31

2 - Disruptor architecture

• What is it?

 Can be viewed as a very efficient FIFO bounded queue

 A data structure to pass data between threads, designed to avoid

contention

21/10/2015 WEB3O03 32

The mighty ring buffer

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

21/10/2015 WEB3O03 33

The mighty ring buffer

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 34

The mighty ring buffer

• Represented internally as an array  caches gets prefetched

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 35

The mighty ring buffer

• Represented internally as an array  caches gets prefetched
• The sequence number is a padded long  no false sharing

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 36

The mighty ring buffer

• Represented internally as an array  caches gets prefetched
• The sequence number is a padded long  no false sharing
• The memory visibility relies on the volatile sequence number  no locks

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 37

The mighty ring buffer

• Represented internally as an array  caches gets prefetched
• The sequence number is a padded long  no false sharing
• The memory visibility relies on the volatile sequence number  no locks
• Slots are preallocated  no garbage collection

10 9
8

7

6

5

4

3
2

1
24

23 22
21

20
19

18

17

16
15

14
13

12 11

Producer

13

Consumer

4

14

5

21/10/2015 WEB3O03 38

Main differences compared to a queue

21/10/2015 WEB3O03 39

Main differences compared to a queue
 Latency and jitter reduced to a minimum

21/10/2015 WEB3O03 40

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

21/10/2015 WEB3O03 41

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

 Can have multiple consumers organized in a

graph of dependency

21/10/2015 WEB3O03 42

Main differences compared to a queue
 Latency and jitter reduced to a minimum

 No garbage collection

 Can have multiple consumers organized in a

graph of dependency

 Consumers can use batching to catch up with

producers

21/10/2015 WEB3O03 43

Benefits for the architecture

21/10/2015 WEB3O03 44

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

21/10/2015 WEB3O03 45

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

 Determinism
 The order in which events were processed is known
 Messages can be replayed to rebuild the server state

21/10/2015 WEB3O03 46

Benefits for the architecture

 Performance
 No locks, no garbage collection, CPU friendly

 Determinism
 The order in which events were processed is known
 Messages can be replayed to rebuild the server state

 Simplification of the code base

 Since the business logic runs on a single thread, there is no
 need to worry about concurrency

21/10/2015 WEB3O03 47

3 – The Disruptor in CESAR

21/10/2015 WEB3O03 48

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

Motor Detector Power Converter

21/10/2015 WEB3O03 49

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

Motor Detector Power Converter

21/10/2015 WEB3O03 50

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

Motor Detector Power Converter

21/10/2015 WEB3O03 51

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

 At the end of a batch, the business logic is triggered and
executed on a single thread

Motor Detector Power Converter

State A State B

21/10/2015 WEB3O03 52

3 – The Disruptor in CESAR

 Each event received from hardware is stored on the ring
buffer

 For each stream of data, the last value is kept

 We make use of batching

 At the end of a batch, the business logic is triggered and
executed on a single thread

 Publish the new states over the network, making sure that
we do not block the Disruptor thread if the message broker is
down

Motor Detector Power Converter

State A State B

21/10/2015 WEB3O03 53

Conclusions
• The Disruptor, a tool from the world of finance, fits

really well in an Accelerator control system

• It simplified the CERN CESAR code base while
handling the flow of data more efficiently

• It is easily integrated in an existing design to replace a
queue or a full pipeline of queues

• The main challenge faced was to switch the

developers’ mind-set to think in asynchronous terms

21/10/2015 WEB3O03 54

Useful Links
• The Disruptor main page with an introduction and code samples:
http://lmax-exchange.github.io/disruptor

• Presentation of the Disruptor at Qcon
http://www.infoq.com/presentations/LMAX

• An article from Martin Fowler:
http://martinfowler.com/articles/lmax.html

• A useful presentation on Latency by Gil Tene who shows that most of

what we measure during performance test is wrong:
http://www.infoq.com/presentations/latency-pitfalls

• New Async logger in Log4J 2
http://logging.apache.org/log4j/2.x/manual/async.html

http://lmax-exchange.github.io/disruptor
http://lmax-exchange.github.io/disruptor
http://lmax-exchange.github.io/disruptor
http://www.infoq.com/presentations/LMAX
http://martinfowler.com/articles/lmax.html
http://www.infoq.com/presentations/latency-pitfalls
http://www.infoq.com/presentations/latency-pitfalls
http://www.infoq.com/presentations/latency-pitfalls
http://logging.apache.org/log4j/2.x/manual/async.html

