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What happens when all flows converge? 
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1- Some background about the Disruptor 
 

• Created by LMAX, a trading company, to build a  high performance Forex 
exchange 
 

• Is the result of different trials and errors 
 

• Challenges the idea that “CPUs are not getting any faster” 
 

• Designed to take advantage of the architecture of modern CPUs, following 
the concept of “mechanical sympathy” 
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1 cache line =  64 bytes 
(on modern x86) 
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2 - Disruptor architecture 

 
• What is it? 

 
 Can be viewed as a very efficient FIFO bounded queue 

 
 A data structure to pass data between threads, designed to avoid 

contention 
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The mighty ring buffer 
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Main differences compared to a queue   
  Latency and jitter reduced to a minimum 

 
  No garbage collection 

 
  Can have multiple consumers organized in a 

graph of dependency 
 
 
 
 

 
 Consumers can use batching to catch up with 

producers 
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Benefits for the architecture 
  

  Performance 
 No locks, no garbage collection, CPU friendly 

 
  Determinism 
   The order in which events were processed is known 
 Messages can be replayed to rebuild the server state 

 
  Simplification of the code base 

 Since the business logic runs on a single thread, there is no 
 need to worry about concurrency  
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 Each event received from hardware is stored on the ring 
buffer 

 
 For each stream of data, the last value is kept 

 
 We make use of batching 

 
 At the end of a batch, the business logic is triggered and 
executed on a single thread 

 
 Publish the new states over the network, making sure that 
we do not block the Disruptor thread if the message broker is 
down 
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Conclusions  
• The Disruptor, a tool from the world of finance, fits 

really well in an Accelerator control system 
 

• It simplified the CERN CESAR code base while 
handling the flow of data more efficiently 
 

• It is easily integrated in an existing design to replace a 
queue or a full pipeline of queues 

 
• The main challenge faced was to switch the 

developers’ mind-set to think in asynchronous terms 



21/10/2015 WEB3O03 54 

Useful Links 
• The Disruptor main page with an introduction and code samples: 
http://lmax-exchange.github.io/disruptor 

 
• Presentation of the Disruptor at Qcon 
http://www.infoq.com/presentations/LMAX 

 
• An article from Martin Fowler: 
http://martinfowler.com/articles/lmax.html 

 
• A useful presentation on Latency by Gil Tene who shows that most of 

what we measure during performance test is wrong: 
http://www.infoq.com/presentations/latency-pitfalls 
 
• New Async logger in Log4J 2 
http://logging.apache.org/log4j/2.x/manual/async.html 
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