Daniel B. Allan(Brookhaven National Lab) ,Thomas A. Caswell(Brookhaven National Lab), Arman Arkilic(Brookhaven National
Lab), Eric Dill(Brookhaven National Lab), Bob L. Dalesio(Brookhaven National Lab)

Overview What is filestore?

filestore 1s an interface to stored data. Files can be stored completely
independent of filestore’s acknowledgement. This means, filestore does not
need to be aware of the file at time of creation. At some point, data
acquisition script(or beamline user, using the externally facing API), should
notify filestore about this data by providing two pieces of information: how
to access and open the file (or, generically, “resource) and how to retrieve a
given piece of data in that file. Just like metadatastore, filestore provides a
token, a unique 1dentifier, which one can use to retrieve each piece of data.

Each NSLS-II beamline can generate 72,000 data sets per day,
over 2 M data sets in one year. The large amount of data files
generated by our beamlines poses a massive file management
challenge. In response to this challenge, we have developed
filestore that provides users with an interface to stored data. By
leveraging features of Python and MongoDB, filestore can store
information regarding the location of a file, access and open the
file, retrieve a given piece of data in that file, and provide users
with a token, a unique identifier allowing them to retrieve each
piece of data. Filestore does not interfere with the file source or

the storage method and supports any file format, making data Example 1: Record and Retrieve a File
within files available for NSLS-II data analysis environment.

Make a Record of the Data

During data collection, we make a record of this file by calling insert_resource . When you read “resource,” you can think “file”, but other resources are also possible. Handlers can
access URLs, URIs, or even generate their results on the fly with no reference to external information (e.g., synthetic testing data).

The arguments to insert_resource are a nickname for the handler, which can be any string, and the arguments needed by __init__ above to locate and open the file.

Why filesltore? In [3]: from filestore.api import insert_resource, insert_datum

In [4]: resource_id = insert_resource('csv', 'example.csv')

Traditionally, all information regarding a experimental files have

In [5]: insert_datum(resource_id, 'some_idl', {'line_no': 1})

been kept in hand-written logbooks or written into experiment W S) B s

generated text files(e.g. spec files). Once the NSLS-I (SRS e sehep et s e
experiments were profiled, it was determined that file I/O was In [7]: insert datun(resource_id, ‘sone_1d3", {'Line_ro’: 31
the biggest performance 1ssue. This performance i1ssue was due In [8]: insert_dotun(resource_id, ‘some_idd’, {*line_no's 4}

Out[8]: <Datum: Datum object>

to opening each experiment file and searching the data file’s | | | |

. In [9]: 1nsertTdatum(resgurce_ld, 'some_id5', {'line_no': 5})
URL within 1t. In order to eliminate this bottleneck, a database Out[91: <Datun: Datum object>
was designed to replace the text files.

In [10]: from filestore.api import register_handler

In [11]: register_handler('csv', CSVLineHandler)

The database of choice 1s MongoDB due to its flexibility and
performance. Just like metadatastore, filestore has a set of
required standard fields and allows users/data acquisition scripts
to add any field on the fly. The unique identifier token and
various fields can be used in order to query the data files and
various handlers(that are available as a part of the filestore and/
or can be developed by the user) can be used to retrieve this data
into data analysis environment. Since NSLS-II experiments
generate 72K data sets per day and over 2 million data sets in
one year, ability to query data with minimal file I/O 1n a flexible
and performant fashion 1s extremely crucial in order to satisty
the needs of users 1n our state-of-the-art facility.

Finally, we are ready to retrieve that data. All we need is the unique ID.

In [12]: from filestore.api import retrieve

In [13]: retrieve('some_id2"')
Out[13]: 'b\n'

Example 3: Retrieve Scan within IPython Notebook Session

In [1]: from dataportal.broker import DataBroker
In [2]: from dataportal.muxer import DataMuxer
In [3]: header = DataBroker[-1]

In [4]: events = DataBroker.fetch_events(header)

In [5]: dm = DataMuxer.from events(events)

Example 2: Simple Handler for HDFS5 File in GPFS In [6]: dm.sources

Out[6]: {u'None_acquire period': u'PV:ADSIM:caml:AcquirePeriod RBV',
u'None_acquire_time': u'PV:ADSIM:caml:AcquireTime RBV',
Write a Handler u'None_image_lightfield': u'PV:ADSIM: ',

u'None_stats totall': u'PV:ADSIM:Statsl:Total RBV',

In [14]: import hS5py u'None_stats total2': u'PV:ADSIM:Stats2:Total RBV',

u'None_stats total3': u'PV:ADSIM:Stats3:Total RBV',

L L et e L u'None stats totald': u'PV:ADSIM:Stats4:Total RBV'

ceat def __init__(self, filename): . - — . R :) -)

self.file = hSpy.File(filename) u'None_stats_total5': u'PV:ADSIM:Stats5:Total_RBV',
def __call__(self, key): u'ml': u'PVv:LSBR-DEV:ml1.RBV',
return self.file[key].value U'Sle‘_Ch2': u'PV:AISIM:ail'}

In [7]: images = dm[u'None_image lightfield']
Make a Record of the Data

In [16]: from filestore.api import insert_resource, insert_datum In [8]: import matplotlib.pyplot as plt

In [17]: resource_id = insert_resource('hdf5-by-dataset', 'example.h5')

In [11]: =matplotlib inline
In [18]: insert_datum(resource_id, 'some_idl@', {'key': 'A'})
Out[18]: <Datum: Datum object>

In [12]: plt.imshow(images.values[0])
In [19]: insert_datum(resource_id, 'some_idl1l', {'key': 'B'})

Out[19]: <Datum: Datum object> Out[12]: <matplotlib.image.AxesImage at Ox7fla24adf290>

In [20]: insert_datum(resource_id, 'some_idl12', {'key': 'C'}) 0
Out[20]: <Datum: Datum object>

Retrieve the Data 200

In [21]: from filestore.api import register_handler, retrieve 400 |

In [22]: register_handler('hdf5-by-dataset', HDF5DatasetHandler)

600
In [23]: retrieve('some_id11')
Out[23]:
array([[1, 9, 4, 2, 4], 800
@, 1, 1, 8, 6],
(6, 8, 3, 0, 21,
(z, 3, 7, 8, 51, 1000
[1, 2, 8, 8, 211) 0 200 400 600 800 1000

In []:

U.S. DEPARTMENT OF

BROOKHFAVEN

NATIONAL LABORATORY

A U.S. Department of Energy laboratory managed by Brookhaven Science Asociates, Inc.
The NSLSII project is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

