
A Protocol for Streaming Large Messages with UDP
Charlie Briegel, Rich Neswold, Mike Sliczniak

FNAL†, Batavia, IL 60510, U.S.A.

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*UDP=0xF100*

ack"all"packets" ack"every"4th"packet" ack"every"8th"packet"

ack"every"16th"packet" ack"first"&"last"packet"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*Local*Large*Msg*Ack*Every*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*First*&*Last*
UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*All*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*Every*16th*
UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*Every*8th*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

Stand3alone*MVME5500*1Gb*Network*Large*Msg*Ack*Every*4th*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*Local*Large*Msg*Ack*Every*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

Recommendations

• The first segment should use typecode 1, asking the receiver
for a resume message. By doing this, part of the payload gets
sent in addition to checking whether the receiver supports
large messages (a timeout indicates no support.)

• The last packet of the message should use typecode 1 to make
sure the entire message was received.

• The sender may vary the interval between ACK requests to
adapt to network conditions. For instance, the sender might
begin the transfer with an interval of 4 packets before asking
for an ACK. If there isn’t an error, then 8 packets can be sent
before the next ACK. If an error occurred, the sender reduces

Rules

• If the offset is zero, then a new reply is arriving. The receiver
can use the size field to pre-allocate a buffer to hold the rest of
the incoming data. After saving the data in the buffer, it sets the
next expected offset to be equal to the size of data that was just
received.

• If the offset is non-zero, it checks to see if the offset and
transfer ID matches a reply that is in progress. If a match is
found, the data is appended to the buffer and the next expected
offset is updated.

• After appending the data, if the packet also asked for a response
(typecode 1 in the long message header), the task will send a
resume message (Figure 2) with the current expected offset.

• If the offset is non-zero and a reply to a transfer ID is in
progress but the offset is too high (a packet was dropped), the
task waits for a packet that also wants a reply. When it arrives,
a resume message is sent to the sender with the offset of the
missing data.

• When the transfer is complete, the last packet will also require
a response. The receiver returns the expected offset (which at
this point will be the size of the data) or a previous offset, if a
packet was dropped.

Stand-alone Implementation ACNet Implementation

0"

10"

20"

30"

40"

50"

60"

10
00
"

28
00
"

81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*All*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*Every*16th*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*Every*8th*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*Every*4th*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"

28
00
"

81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*First*&*Last*UDP*

UDP=0xF100" UDP=0x8100" UDP=0x7100" UDP=0x2100"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*UDP=0xF100*

ack"all"packets" ack"every"4th"packet" ack"every"8th"packet"

ack"every"8th"packet" ack"first"&"last"packet"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*UDP=0x8100*

ack"all"packets" ack"every"4th"packet" ack"every"8th"packet"

ack"every"16th"packet" ack"first"&"last"packet"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNEt**MVME5500*1Gb*Network*Large*Msg*Ack*UDP=0x7100*

ack"all"packets" ack"every"4th"packet" ack"every"8th"packet"

ack"every"16th"packet" ack"first"&"last"packet"

0"

10"

20"

30"

40"

50"

60"

10
00
"
28
00
"
81
92
"

28
00
0"

32
00
0"

61
44
0"

10
00
00
"

20
00
00
"

40
00
00
"

80
00
00
"

10
00
00
0"

20
00
00
0"

40
00
00
0"

80
00
00
0"

16
00
00
00
"

32
00
00
00
"

M
By

te
s/
Se
c*

Long*Message*Size*in*Bytes*

ACNet*MVME5500*1Gb*Network*Large*Msg*Ack*UDP=0x2100*

ack"all"packets" ack"every"4th"packet" ack"every"8th"packet"

ack"every"16th"packet" ack"first"&"last"packet"

ACNet

msg sent to

“LNGMSG”

Portion of Data Payload

as specified by

Large Message Protocol

Protocol

ACNet

original msg header

ACNet Results

