
AN UPDATE ON CAFE, A C++ CHANNEL ACCESS CLIENT LIBRARY,

AND ITS SCRIPTING LANGUAGE EXTENSIONS

J. Chrin, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

CAFE (Channel Access interFacE) is a C++ client library

that offers a comprehensive and easy-to-use interface to

EPICS (Experimental Physics and Industrial Control Sys-

tem). Functionality is provided for the synchronous and

asynchronous interaction of individual and groups of low-

level control data, coupled with an abstraction layer to facil-

itate development of high-level applications. The code base

has undergone major refactoring to make the internal struc-

ture more comprehensible and easier to interpret, and further

interfaces have been implemented to increase its flexibility,

in readiness to serve as the CA host in fourth-generation

and scripting languages for use at SwissFEL, Switzerland’s

X-ray Free-Electron Laser facility. An overview of the struc-

ture of the code is presented, together with an account of

newly created bindings for the Cython programming lan-

guage, which offers a major performance improvement to

Python developers, and an update on the CAFE MATLAB

Executable (MEX) file.

INTRODUCTION

CAFE (Channel Access interFacE) [1, 2] is a modern,

C++ client library that provides an intuitive and multifaceted

user interface to the EPICS (Experimental Physics and In-

dustrial Control System) [3] native C-based Channel Ac-

cess (CA) Application Programming Interface (API) [4]. It

allows for remote access to control data, encapsulated in

Process Variables (PVs) residing in EPICS Input/Output

Controllers (IOCs), while sheltering the user from the intri-

cacies of programming with the native CA library. CAFE’s

conception arose from requirements foreseen by SwissFEL,

Switzerland’s X-ray Free-Electron Laser [5], coupled with

the desire to avoid deprecated CA APIs propagating into a

new project. Its development has since encompassed a re-

newed effort as requirements for application development for

the forthcoming commissioning phase became apparent [6].

In particular, it was recognized that the effort afforded to a

complete API, that further provided abstract layers for beam

dynamics applications, could be readily incorporated into

any C/C++ based scripting languages of choice. The main

advantages to this approach are:

• The inherent simplicity and convenience of maintaining

a single CA interface code. New CA functionalities

from future EPICS 3 releases need only be integrated

into a single base library.

• A uniform response to errors and exceptions that facili-

tates trace-backs.

• The CA class is well separated from the internals of the

domain language meaning that bindings to other script-

ing and domain-specific libraries are vastly simplified.

An overview of the structure of the code is given, together

with a discussion on design features that provide control

over configurable components that govern the behaviour of

interactions, and guarantee that the outcome of all method

invocations are captured with integrity in every eventuality.

Newly created bindings to Cython are then presented, and the

improvement in performance yielded to Python developers

is emphasized. An updated version of CAFE’s MATLAB

Executable (MEX) file [7], that exposes new functionalities

to MATLAB [8] users, has also been made available.

CAFE C++ IMPLEMENTATION

The C++ interface to the EPICS Channel Access client

library follows sound practices in CA programming [9] by

placing careful attention to:

• Management of client-side CA connections.

• Memory optimization, particularly when connections

are restored.

• Separation of data retrieval from its presentation.

• Strategies for converting between requested and native

data types.

• Caching of pertinent data related to the channel and its

state.

• Aggregation of requests for enhanced performance.

• Adaptive correction procedures, e.g. for network time-

outs.

CAFE provides functionality for synchronous and asyn-

chronous interactions for both single and groups of channels.

All transactions report their data to a multi-index container

provided by the Boost C++ libraries [10]. Here, the container

takes ownership of instances of the “Conduit” object, each

of which acts as the storage location for all data related to its

associated PV. Multiple, distinct interfaces (or indices) pro-

vide convenient access to the object elements, allowing their

data to be quickly retrieved or modified. The handle index

(or object reference) has been configured with a unique key,

and as such, acts at the definitive reference to the resource’s

data. To facilitate data access the underlying container is

also indexed by PV, PV Alias, and the CA Channel Identifier.

Callback functions have been implemented on all operations

involving connection handlers, event handlers and access

right handlers. Their invocation triggers their data to be

written into the “Conduit” container object. In this way, the

connection state of the channel, and all the channel’s param-

eter values, are recorded with integrity. Memory to hold the

channels data is allocated dynamically on first connection,

and re-examined in the event of re-connection. Only one

connection per channel is ever established, unless the chan-

nel is also member of a synchronous group (which itself

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF132

User Interfaces and Tools

ISBN 978-3-95450-148-9

1013 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

C
o

n
d

u
it

C
o

n
d

u
it

C
o

n
d

u
it

P
V

1

2

P
V

2

3

P
V

3

…

P
V

..
.

cafe->get(handle1,value)

Client

Server

cafe->get(handle3,value)

 H
a

n
d

le

P
V

B
o

o
st

 M
u

lt
i-

In
d

e
x

C
o

n
ta

in
e

r

IOC IOC IOC

C
h

a
n

n
e

l
A

cc
e

ss

S
to

ra
g

e

IOC

C
o

n
d

u
it

1

In
d

e
x
 b

y
:

Application
Layer

CAFE

E
v
e

n
t

H
a

n
d

le
rs

E
v
e

n
t

H
a

n
d

le
rs

E
v
e

n
t

H
a

n
d

le
rs

E
v
e

n
t

H
a

n
d

le
rs

E
v
e

n
t

H
a

n
d

le
rs

Query Query Query Query

Figure 1: The information flow for a cafe method invocation in the case of a connected channel, PV1 (green), and a

disconnected channel, PV3 (red). The multi-index container (“Conduit” object) serves as the data store for the full

complement of the PV’s data, whether static or dynamic. The handle (index) is the reference to the resource’s data. PV data

emitted from the IOC is recorded within the container (yellow); cafe method invocations first query the container to assess

whether the prerequisites for launching a message have been met.

exists as a logical software entity), in which case a separate

virtual circuit is created and a new handle assigned.

All commands first query the container to establish

whether a message need be sent over the network. This

is illustrated in Fig. 1, which shows the response to a method

invocation on a connected channel, PV1, and disconnected

channel, PV3. Only if the prerequisites for the method in-

vocation are satisfied, e.g. the channel is connected, is the

message sent to the IOC. A hierarchy of software procedures

ensures that the most appropriate, and immediate, error mes-

sage is reported to the client. For instance, a message to PV3

will report either that the channel is presently disconnected

or has never been connected, if that be the case.

Policy classes provide control over configurable compo-

nents that govern the behaviour of interactions, either on a

global or individual basis. These include policies that de-

termine procedures to establish connectivity, blocking or

non-blocking method invocations, a strategy for converting

between data types that are requested and offered, and allow

for network time-outs to adapt dynamically.

An XML configuration mechanism provides a convenient

framework for users to define and initialize CAFE groups.

Transactions on CAFE group objects are invoked through

simple intuitive method invocations that reference groups

through their identifier.

In addition to refactoring the internal structure of the

code, the CAFE interface has also been extended to facili-

tate bindings to scripting languages (e.g. C++ vectors map

directly onto Python lists). Among the new features that

have been added is a mechanism to enable and simplify

multi-dimensional scan procedures.

SCRIPTING AND DOMAIN-SPECIFIC

LANGUAGE EXTENSIONS

CAFE, by design, was not only intended to be sufficiently

expressive to provide the required abstractions in a conve-

nient way, but also flexible enough to act as a CA gateway for

other, underlying C/C++ based programming languages. As

discussed in [2], the idea of providing a single C++ library

for use across a number of scripting and domain-specific

languages (DSLs) enforces a logical boundary between com-

ponents of the CA API and the specifics of a given do-

main’s C/C++ extension framework. In this way, the CA

classes are not confined to the system in which they execute.

Code reusability avoids repetition, reduces maintenance,

WEPGF132 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1014C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

and vastly simplifies the creation of bindings. Indeed, ex-

posing CA functionality to a given domain begins to follow

a definite and recognizable pattern, which, after careful val-

idation of input arguments, largely reduces to a mapping

of CAFE/C++ data types to their domain equivalent. The

CAFE C++ library has sufficient breadth and maturity to act

as a suitable host for scripting languages. Whatever it may

be missing, should be typically straightforward to address.

Bindings have been provided for Python and MATLAB,

which are the languages of choice for physics application

developers at SwissFEL.

CyCafe: Syphoning CAFE with Cython

Cython [11] is a programming language that offers a

Python-like style of coding while maintaining the perfor-

mance advantages of C. Its prime capabilities are to compile

Python code into C or C++ source code, and to interface with

external C/C++ libraries. With both the powerful Cython

(version 1.22) constructs and the full Python language avail-

able for disposal, an optimized Python interface has been

developed for CAFE (CyCafe). The Python extension mod-

ule is named PyCafe. A number of CAFE methods exposed

to PyCafe are shown in Listings 1 and 2. The improvement

in performance for a single channel operation is a healthy

factor of four compared to a pure Pythonic channel access

operation. Some important and novel particularities of pro-

viding the CyCafe API are revealed in the following.

Python Buffer Protocol: The introduction of a new

buffer protocol allows a number of Python built-in types,

such as memoryview, the ndarray arrays from the much used

NumPy scientific computing package [12], and other objects

that implement the protocol, to share their data without the

need for copying. Cython can similarly extend the buffer pro-

tocol to work with data arising from external libraries. Cy-

Cafe consequently provides interfaces that cater for the new

buffer protocol. In particular, their use in reading/writing

waveforms results in a marked improvement in performance.

C Function Pointers and Callbacks: Cython supports

C function pointers allowing C functions, that take function

pointer callbacks as input arguments, to be wrapped. This

feature allows users to pass a Python function, created at

runtime, to control the behaviour of the underlying C func-

tion. Using this methodology, a Python callback function

may be easily supplied for any asynchronous CA interaction.

This is highlighted in Listing 2, where a monitor on a PV is

activated. A novel aspect of the CyCafe interface, here, is

that only the handle (i.e. object reference) is, and need be,

reported back to the callback function. Since the CAFE API

takes the provision to cache the data in its internal storage

area, defined by the multi-index container, the user may call

upon any one of a number of CAFE methods that retrieve

data directly from the cache, as show in line 4 of Listing 2.

The precedence of sifting through Python dictionaries is

obviated.

Listing 1: PyCafe Read/Write Examples

1 import PyCafe

2 cafe = PyCafe.CyCafe()

3 cyca = PyCafe.CyCa()

4

5 #handlePV=<handle/'pvName'>

6 #dt=<'int','float','str','native'(default)>

7 #hpvList=<hList/pvList> i.e. handle/'pvName' list

8 #s gives overall status, sList is a status list

9 pvList=['pv1','pv2','pv3','pv4']

10 try:

11 handle= cafe.open('pvName') #returns obj. ref.

12 hList = cafe.open(pvList) #ret. obj. ref. list

13 except Exception as inst:

14 print inst

15

16 #Synchronous Single Channel Operations

17 try:

18 #get value in native type

19 value = cafe.get(handlePV)

20 #returns structured data

21 pvData= cafe.getPV(handlePV, dt='float')

22 #write operation

23 cafe.set(handlePV, pvData.value+0.001)

24 #waveform, return list in native type

25 valList = cafe.getList (handlePV)

26 #waveform, return memoryview of floats

27 memview = cafe.getArray(handlePV, dt='float')

28 #waveform, return numpy array in native type

29 npArray = cafe.getArray(handlePV, asnumpy=True)

30 #set waveform; input [values] may be any of

31 #list, memoryview, numpy.ndarray, array.array

32 cafe.set(handlePV,[values])

33 #Get cached controls data

34 pvCtrl = cafe.getCtrl(handlePV)

35 pvCtrl.show() # print all control parameters

36 print "units = ", pvCtrl.units

37 print "precision = ", pvCtrl.precision

38 print "enum options (if any): ", pvCtrl.enum

39 except Exception as inst:

40 print inst

41

42 #Synchronous Multiple Channel Operations

43 valList,s = cafe.getScalarList(hpvList)

44 s,sList = cafe.setScalarList(hpvList, valList)

45

46 #Asynchronous Single/Multiple Channel Operations

47 s,sList = cafe.getAsyn(hList)

48 s,sList = cafe.waitForBundledEvents(hList)

49 pvData = getPVCache(hList[0])

50

51 #Synchronous Groups

52 #gHandleName=<groupHandle/'groupName'>

53 s = cafe.defineGroup('groupName', pvList)

54 gHandle = cafe.openGroup('groupName')

55 valList,s,sList = cafe.getGroup (gHandleName)

56 s,sList = cafe.setGroup (gHandleName, valList)

57 #returns list of structured data

58 pvgList = cafe.getPVGroup(gHandleName,dt='str')

59

60 cafe.terminate() #tidy up

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF132

User Interfaces and Tools

ISBN 978-3-95450-148-9

1015 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Listing 2: PyCafe Monitor Example

1 import PyCafe

2 cafe = PyCafe.CyCafe()

3 cyca = PyCafe.CyCa()

4

5 #Callback function

6 def py_callback(handle):

7 #Any method that retrieves data from cache

8 pvData=cafe.getPVCache(handle)

9 pvData.show()

10 return

11

12 #Start Monitor

13 monID=cafe.monitorStart(handle, cb=py_callback,

dbr=cyca.CY_DBR_TIME, mask=cyca.CY_DBE_VALUE|

cyca.CY_DBE_ALARM)

14 ...

15 status=cafe.monitorStop(handle, monID)

16

17 cafe.terminate() #tidy up

Global Interpreter Lock (GIL): Cython uses the

CPython/API to access C-level code. CPython’s memory

management is not, however, thread-safe, necessitating a

dedicated mutex, the Global Interperter Lock (GIL), to en-

sure that only one native thread executes Python bytecodes

at any given time. External C code that does not interact

with Python objects can, however, be executed without the

GIL in effect, and thus achieving thread-based parallelism.

All methods that access the low-level hardware through CA

are done so in a non-GIL context. Without taking this neces-

sary step of releasing the GIL, PyCafe will otherwise hang,

particularly in cases where callbacks are involved. A moni-

tor callback can still be invoked even while another CAFE

operation is being invoked. All CyCafe methods that inter-

act over the network are consequently called in a non-GIL

context, i.e. with the GIL released.

MOCHA: A MATLAB Executable File for CAFE

MOCHA (MATLAB Objects for CHannel Access) is a

MATLAB Executable (MEX) file that provides CA func-

tionality to MATLAB through CAFE. MOCHA supports all

MATLAB data types, and benefits from MATLAB’s 64-bit

indexing functionality, granting cross-platform (32/64-bit)

flexibility. MOCHA methods may be invoked directly with-

out the need to run additional MATLAB scripts.

The package has been put into good effect at the Swiss-

FEL Injector Test Facility (SITF) [13], where it proved to

be a stable and robust API that served the extensive needs

of applications developers. The MOCHA MEX file, pre-

viously presented in [7], has since been consolidated with

the updated CAFE library. As is the recommended prac-

tice, a separate MEX file has been compiled for each release

version of MATLAB.

SUMMARY

The CAFE C++ Channel Access interface library has been

refactored, extended and consolidated, in preparation to

serve as the Channel Access host to scripting languages

in use for beam dynamics applications at SwissFEL. In par-

ticular, CAFE’s new Cython interface exposes an extensive

set of CA functionality to Python developers and offers a

significant improvement in performance. The entire CAFE

package may be downloaded from the CAFE website [1].

It would be a relatively straightforward task to extend the

scope of this work to other C/C++ based languages once the

specifics of the domain’s C/C++ extension framework have

been grasped.

REFERENCES

[1] CAFE, http://ados.web.psi.ch/cafe/.

[2] J. Chrin and M.C. Sloan, “CAFE, A Modern C++ Interface

to the EPICS Channel Access Library”, in Proc. 13th Int.

Conf. on Accelerator and Large Experimental Physics Con-

trol Systems (ICALEPCS’11), Grenoble, France, Oct. 2011,

paper WEPKS024, pp. 840–843.

[3] EPICS, http://www.aps.anl.gov/epics/.

[4] J.O. Hill and R. Lange, “EPICS R3.14 Channel Access Ref-

erence Manual”,

http://www.aps.anl.gov/epics/docs/ca.php

[5] “SwissFEL Conceptual Design Report”, R. Ganter, Ed. PSI,

Villigen, Switzerland, Rep. 10-04, Version Apr. 2012.

[6] T. Schietinger, “Beam Commissioning Plan for the SwissFEL

Hard X-ray Facility”, presented at the 37th Int. Free-Electron

Laser Conf. (FEL’15), Daejeon, Korea, Aug. 2015, paper

MOP017.

[7] J. Chrin, “MATLAB Objects for EPICS Channel Access”, in

Proc. 14th Int. Conf. on Accelerator and Large Experimental

Physics Control Systems (ICALEPCS’13), San Francisco, CA,

USA, Oct. 2013, paper MOPPC146, pp. 453–456.

[8] MATLAB®,

http://www.mathworks.com/products/matlab/.

[9] D. Zimoch, “Channel Access Client Programming”, EPICS

Collaboration Meeting, 27-29 Jul. 2009, NFRI, Daejeon,

Korea,

http://www.aps.anl.gov/epics/meetings/2009-07/.

[10] Boost Multi-index Containers Library,

http://www.boost.org/libs/multi_index/.

[11] Cython C-Extensions for Python, http://cython.org/.

[12] NumPy, http://www.numpy.org/.

[13] T. Schietinger et al., “Commissioning Experience and Beam

Physics Measurements at the SwissFEL Injector Test Facil-

ity", in preparation.

WEPGF132 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1016C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools

