
C. De Villiers#, B. Xaiaǂ, SKA South Africa, National Research
Foundation of South Africa, South Africa

Abstract
The KAT-7 and MeerKAT radio telescope control

systems (www.ska.ac.za) are built on a rich Python
architecture. At its core, we use KATCP (Karoo Array
Telescope Communications Protocol), a text-based
protocol that has served the projects very well. KATCP is
supported by every device and connected software
component in the system. However, its original
implementation relied on threads to support asynchronous
operations, and this has sometimes complicated the
evolution of the software. Since MeerKAT (with 64
dishes) will be much larger and more complex than KAT-
7, the Control and Monitoring (CAM) team investigated
some alternatives to classical threading. We have adopted
Tornado (www.tornadoweb.org) as the asynchronous
engine for KATCP. Tornado, popular for Web
applications, is built on a robust and very efficient
coroutine paradigm that in turn is based on Python's
generators. Co-routines avoid the complexity of thread re-
entrancy and lifetime management, resulting in cleaner
and more maintainable user code.

This poster will describe our migration to a Tornado co-
routine architecture, highlighting the benefits and some of
the pitfalls and implementation challenges we have met.

KATCP IN THE KAT-7 AND MEERKAT
SYSTEMS

KATCP [1,2] is a simple ASCII communication
protocol layered on top of TCP/IP.

It has been developed as a part of the Karoo Array
Telescope (KAT) and MeerKAT projects and used at SKA
South Africa for the monitoring and control of hardware
devices. In this role it has been very successful and the
specification is currently at Revision 5.

The original KATCP implementation provided a
blocking client and a non-blocking CallbackClient.

Base message types are Request, Reply and Inform -
the latter are sent asynchronously by a server to provide
out-of-band data or (in some cases) to provide a way of
segmenting the results of a previous request.

KATCP additionally defines a software Sensor type.
Sensors are created with names and data types such as
float, string etc. Dynamically a sensor may acquire a
value and a status which it communicates to its registered
listeners via callbacks. A listening client may set a
strategy on the sensor which causes it to push its value
and status to the listener periodically or on certain events,

such as a value change. An ad-hoc query mechanism is
also available.

KATCP messages, sensors, servers and clients are the
building-blocks of the KAT-7 and MeerKAT Control and
Monitoring systems. These robust abstractions support the
next layer of the architecture, which comprises software
proxies to abstract access to real hardware, and
components that partition the work of system startup and
shutdown, scheduling, observation control and
monitoring.

LIMITATIONS OF THREADS
In earlier implementations of KATCP, the inherent

concurrency of real-time processes was modelled using
software thread. Threads provide the illusion of parallel
execution within a single processor core by performing
pre-emptive task switches at the system level. This has
benefits for processing efficiency since the system need
never be idle - while some thread of control is awaiting an
event, another thread can be executing. This can be
especially useful in networked systems where many
cycles would otherwise be wasted waiting for I/O events.

However threads also have some well-known
drawbacks. Each thread has its own execution context and
this means that threading is resource-intensive, so that the
number of active threads must be limited. Perhaps even
more important is the complexity they introduce into
software design. Since any thread of control may be
interrupted or resumed at essentially arbitrary moments,
software becomes ‘non-linear’ and the designer must
carefully guard against inadvertent corruption of shared
resources. Numerous best-practices and software
constructs exist to alleviate these problems, but all
contribute to the complexity and cost of software
development and maintenance.

Finally the Python language, which has proved
immensely valuable in the development of our systems,
implements a Global Interpreter Lock (GIL) which
essentially disables threading for compute-bound tasks on
a single processor.

MIGRATION TO TORNADO

Like many teams facing these challenges, we have been
interested in the developments in coroutine-based
concurrency frameworks. Coroutines are a generalisation
of subroutines based on co-operative multitasking, in
contrast to the pre-emptive model used by threads
Coroutines differ from subroutines in allowing multiple
entry-points (and multiple entries per entry-point) within
the body of a routine, with the preservation of the full
execution context at that point. Because task-switching is

__

#charles@ska.ac.za
ǂ bxaia@ska.ac.za

USE OF TORNADO IN KAT-7 AND MeeRKAT FRAMEWORK

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF118

Software Technology Evolution

ISBN 978-3-95450-148-9

977 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

cooperative, the developer can tell by inspecting the code
where a context switch may occur. This makes it much
easier to ensure and verify the determinism of the code.
Task switches are ‘lightweight’ because only the normal
stack mechanism is required to save and restore context.
All coroutines in a process typically run within a single
execution thread.

Coroutines are an important tool to support lightweight
concurrency, but for a large system one also needs a
scheduling mechanism so that independent subtasks can
execute without mutual awareness. This is achieved
through a coroutine framework. After some research we
chose the open-source Tornado framework.

Tornado[3] is a Python web framework and
asynchronous networking library, and offers non-blocking
I/O and concurrency support via coroutines. It is capable
of scaling to tens of thousands of open connections and
concurrent handlers. In addition it provides a scalable,
non-blocking Web server and application framework.
Although Web development is not our primary focus, the
MeerKAT GUI is web-based, and HTTP servers are also
proving useful in other areas. Tornado allows for multiple
long-lived client connections with minimal overhead.

The MeerKAT GUI displays have been completely re-
engineered using Tornado and other modern technologies
such as AngularJS. The MeerKAT GUI displays real-time
data from the back-end components. Using the Tornado
web server and websockets, tests have shown that it can
comfortably handle multiple, concurrent, long-lived
connections from components as well as human users.
Additional libraries and adapters have eased integration,
such as toredis (a Redis client on top of Tornado),
sockjs_tornado (WebSocket emulation), etc.

KATCP Implementation using Tornado
An objective of our adoption of Tornado was to replace

the use of threading throughout the codebase. Because the
original KATCP client and server base classes were
thread-based, this was the natural starting-point for the
implementation.

The Tornado scheduler is called the ‘ioloop’. Every
component and activity requiring scheduling must have a
reference to the ioloop, This reference may be obtained
from the global execution context, or passed in as a
parameter. The latter method allows for a ‘local’ ioloop to
be used in specific cases.

A particular challenge of the CAM implementation was
our large legacy codebase, which has many instances of
operations expecting synchronous (blocking) responses.
The Tornado ioloop mechanism, however, is non-blocking
and returns Futures - placeholders for the result of
possibly incomplete operations. Obtaining the result of
the operation that returns a Future requires the use of the
yield keyword within a coroutine. On encountering this
construct, the ioloop engine suspends the current
operation and continues with the execution of other

coroutines until the result of the Future is available. Then
the original stack context is restored and the function
continues with the result it has obtained.

KATCP proxies and other top-level components
typically run within their own threads or processes to
minimize I/O contention. To facilitate the transition from
thread-based to coroutine-based concurrency, a
compatibility layer was added to KATCP. Some of the
classes in this compatibility layer are briefly described
below.

The IOLoopManager helper class provides a facade for
an ioloop instance that may be shared across components,
or running in a private thread. This class exists to abstract
this difference and to guard against inadvertent thread
contention.

Even when a section of the codebase has been
converted to coroutines, we often need a way to return a
synchronous result for clients that expect this, and that
may be running within their own arbitrary threads. This
has been achieved by implementing Python code
decorators within our custom compatibility layer: the
_make_threadsafe() wrapper ensures that arbitrary code is
executed within the ioloop’s own thread, while the
_make_threadsafe_blocking() decorator additionally
guarantees that the Future’s result will be resolved before
it is returned to the blocking caller. A DeviceClient
instance may call enable_thread_safety() before it is
started, in order to apply the relevant decorators to all its
methods. The whole instance thus becomes implicitly
threadsafe and/or blocking, and hence suitable for
integration with legacy code.

A feature of KATCP from its origins was introspection;
a client can query any device on the network and obtain a
specification of its interface (requests and sensors). On
connection. the client builds a local representation of the
server’s interface, and proxies those capabilities using
Python’s dynamic binding. This feature is implemented in
the InspectingClient class. The InspectingClient monitors
its own connection and synchronisation state and attempts
to re-initialise itself if the connection is lost or the server
indicates an interface change. The Inspecting Client in
turn may be included in a higher-level container, where it
can be commanded and interrogated by an interactive user
or a script.

Figure 1 shows a conceptual view of the CAM software
layers involved in the Tornado integration.

WEPGF118 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

978C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Figure 1: CAM Software Layers.

CONCLUSION
Our adoption of Tornado has brought a number of

benefits as well as some challenges.

Benefits
Tornado in CAM has begun to deliver on its promise of

efficient multitasking. This is especially evident in areas
of our codebase that have been fully converted to the
Tornado idiom, such as the sensor-archiving component
KatStore and the web-based GUI. Tornado has its own
testing framework (built on the standard Python unittest)
and this is helping us to eliminate the thread-management
challenges that used to hamper our testing. Code at the
application level is greatly simplified by the elimination
of the complex locking and concurrency control that were
necessary for safe threading. This in turn can only benefit
reliability and maintainability in the long run.

Challenges
Coroutines and the event loop were an unfamiliar

paradigm to most of the team. It takes time to fully
understand coroutines and futures, and to recognise the
ways in which existing code must change to
accommodate them. Despite the compatibility tools added
to KATCP, a significant effort has been required to
integrate the changes with the rest of the system, and
many unit tests initially failed because of explicit or
implicit threading dependencies. Some components and
some tests have still to be converted.

Debugging can be difficult because of the many layers
of ‘scaffolding’ code introduced by the framework; of
course any concurrent model has similar problems. Better
tools may help here.

ACKNOWLEDGEMENTS
KATCP was developed as part of the Karoo Array
Telescope (KAT) project.

Tornado was developed at FriendFeed.

The Tornado implementation of KATCP was mainly
implemented by Neilen Marais as part of the MeerKAT
project.

REFERENCES
[1] KATCP documentation,

website: https://pythonhosted.org/katcp/
[2] KATCP GitHub Repository,

website: https://github.com/ska-sa/katcp-python
[3] Tornado documentation,

website: https://tornado.readthedocs.org/en/stable/

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF118

Software Technology Evolution

ISBN 978-3-95450-148-9

979 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

