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Abstract 

Version 4 of the Experimental Physics and Industrial 

Control System (EPICS [1]) toolkit allows defining 

application-specific structured data types (pvData) and 

offers a network protocol for their efficient exchange 

(pvAccess). We evaluated V4 for the transport of neutron 

events from the detectors of the Spallation Neutron 

Source (SNS) to data acquisition and experiment 

monitoring systems. This includes the comparison of 

possible data structures, performance tests, and 

experience using V4 in production on a beam line. 

MOTIVATION 

On SNS beam lines, each neutron event consists of a 

pixel ID that identifies the location of the detector where 

a neutron was observed, and a time-of-flight measurement 

that describes when the neutron was detected relative to 

the most recent beam pulse. Depending on the beam line 

and its specific configuration, event rates can reach a few 

million events per seconds. 

This neutron event information needs to be transferred 

from detectors to processing stages that provide users of 

the experiment with visual feedback, accumulate 

information that allows for the automation of the 

experiment, and finally stream the events into a data 

collection pipeline for long-term storage of the 

experiment data. 

The original SNS beam line data acquisition software 

used a locally developed UDP/IP-based network protocol 

to transmit neutron event information [2]. The limited 

performance and reliability of this protocol necessitated 

an update of the overall data acquisition software [3].  

 

EPICS V4 

Based on a proven track record for control of the SNS 

accelerator, EPICS had been chosen as a toolkit for the 

beam line control system upgrade. While Channel Access 

[4], the original EPICS network protocol, has a well 

defined and functional set of data objects, this set is fixed 

to types suitable for describing a single data point, for 

example a temperature reading or voltage set point. 

EPICS V4 [5] is an addition to the EPICS toolkit that 

introduces an alternative to the existing EPICS V3 data 

types and network protocol. 

 

pvData 

pvData is the EPICS V4 library for structured data. It 

can describe such data in an operating-system 

independent way, hold it in memory, and copy complete 

or partial data containers. The data can include time 

stamps, numeric values, enumerated data, text and alarm 

information. Data can also be assembled into arrays and 

structures. 

Normative Types 

pvData allows clients to define nearly arbitrary data 

structures, which is ideal for packaging site-specific 

information. At the same time it limits the interoperability 

of applications. Normative Types are a set of agreed-upon 

pvData types that all implementers of V4 applications are 

encouraged to support. All original EPICS V3 data types 

are described as Normative Types, allowing for an 

eventual transition from V3 to V4. In addition, data types 

like N-dimensional images or statistical samples that are 

often used in higher-level control system applications are 

available as Normative Types. 

pvAccess 

pvAccess is the V4 network protocol that allows for the 

exchange of pvData. It is conceptually similar to V3 

Channel Access, using UDP/IP for channel name 

resolution, and then establishing a TCP/IP connection 

between pvAccess servers and clients to exchange data. It 

supports basic read and write access. A subscription mode 

efficiently updates clients on changes in the data by only 

transferring the modified structure elements. Finally, a 

combined write/read mode supports remote service calls 

by atomically sending parameters, awaiting the execution 

of the remote service, then returning the result.  

 

Both pvData and pvAccess have been implemented in 

C++ and Java, with additional bindings for Python [6]. 

SNS NEUTRON DATA 

SNS neutron data consists of a list of pixels and time-

of-flights as already described, combined with a 

sequential pulse number and the proton charge of the 

accelerator pulse that generated these neutrons. 

The following pvData structure would be a direct 

representation: 

 

// Sequential pulse number 

uint64   pulse 

 ____________________________________________  
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// Proton Charge 

double   proton_charge 

// Event array, each element is 

// time-of-flight & pixel 

struct 

{ 

    uint32  time_of_flight 

    uint32  pixel 

} events[] 

 

Each neutron event naturally combines the affected 

detector pixel and the time of flight when the event 

occurred. The above data structure always provides each 

such event as a tuple of {  time_of_flight, pixel }. 

Some consumers, however, require only a subset of this 

tuple. A time-of-flight histogram only needs to inspect the 

time_of_flight elements, and a spatial X/Y histogram only 

the pixel elements. With the above structure they need to 

subscribe to the “events” array and thus always receive 

both the time of flight and pixel information.  

The following data structure holds the same 

information, but allows clients to subscribe to just the 

information of interest: 

 

// Time stamp for everything in this 

// structure. 

// timeStamp.userTag holds 

// sequential pulse number 

time_t timestamp 

 

// Proton Charge 

NTScalar proton_charge 

   double value 

 

// Time-of-Flight values for N neutron events 

NTScalarArray time_of_flight 

    uint[]  value 

 

// Pixel IDs for N neutron events 

NTScalarArray pixel 

    uint[]  value 

 

With this optimized data structure, all producers and 

consumers agree that the “time_of_flight” and “pixel” 

arrays always contain the same number of elements, 

because corresponding array elements constitute one 

neutron event. 

A tool that accumulates the X/Y histogram can now 

subscribe to just the “pixel” element, receiving only this 

data and thus reducing the network traffic. Tools that 

require the complete information can still subscribe to the 

whole pvData structure. 

In addition, this updated structure packages the 

sequential pulse number into the ‘user’ element of the 

normative time stamp type, and bases the proton charge, 

time of flight and pixel elements on Normative Types, 

allowing for compatibility with generic V4 client tools. 

pvData allowed us to package the events as either an 

array-of-structures or a structure-of-arrays, and we chose 

the latter to optimize network traffic for the various use 

cases. For certain detector types or operating modes, the 

above structure can be extended with additional data 

elements, for example to transmit internal detector counts, 

which are used during calibration.  

PERFORMANCE TESTS 

We implemented a V4 server that emits data of the 

above format with sequential pulse numbers as well as a 

V4 client that subscribes to this data, counting the 

received elements and specifically detecting missed pulse 

numbers [7]. 

Figure 1 shows network traffic results from executing 

the demonstration server and client on a 1 gigabit 

Ethernet link. The server was sending 100 updates per 

second, varying the number of events in each of these 

updates. When each packet contains 150000 events, 100 

times a second, this would equate transmitting 15 million 

SNS neutron events per second. Up to about 15 million 

events per second, the measured network traffic scaled 

linearly. There is very little overhead on the expected 

network traffic based on the underlying data size, proving 

that pvAccess efficiently serializes the pvData. 

As we increased the event rate beyond 15 million SNS 

neutron events per second, the network traffic 

asymptotically approaches 95 MB per second. The client 

starts to indicate lost pulse updates. CPU loads of the 

server and client were only about 30%, indicating that we 

reached the limit of TCP on 1GigE.  

 

 
Figure 1: Network traffic on 1GigE network when 

sending various amounts of neutron events packaged into 

100 updates per second. 

 

On a 10GigE test setup, the simulated SNS neutron 

event rate could be increased to about 100 million events 

per second before reaching CPU load limits on the server. 

GENERIC V4 TOOLS 

EPICS V4 includes generic command line tools. The 

“pvinfo” command displays the IP address of the V4 
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server and the pvData structure of a V4 channel. This is 

useful for testing if a V4 server is online, and to check if 

the data contains the expected elements. 

The “pvget” command can display the complete 

structure of a current value, or subscribe to selected 

elements. For example, the following command would 

show updates to the pixel array of the data sent by the V4 

server, on a V4 channel named “neutrons”, used in the 

performance tests: 

 

pvget –m –r neutrons.pixel  

USE OF V4 AT SNS BEAM LINES 

As part of the update to the SNS detector control 

software to EPICS, the nED software [8] was developed 

to provide a pluggable framework for interfacing to the 

various detector configurations found at different beam 

lines. One nED module is a V4 server that publishes the 

SNS neutron data in the format we described. 

There are two primary network clients for this data. 

One is a streaming data acquisition system that writes all 

neutron events to files for later analysis. The other is 

ADnED, an EPICS Area Detector driver which provides 

user displays and information for automation [9]. 

Ideas from the example server code [7] were used to 

create the V4 server in nED. Similarly, the example 

server was useful to create test data during the 

development of ADnED, allowing independent 

development and testing of these tools. 

CONCLUSION 

SNS neutron data can be packaged in pvData. By 

comparing different packaging options, we were able to 

optimize the network traffic based on the expected types 

of network clients. 

The performance of pvAccess easily meets our 

requirement of about 10M events/sec on 1GigE and 

exceeds it on 10GigE. 

While the original SNS beam line data acquisition 

software was limited to Microsoft Visual C++ on 

Windows, the EPICS V4 libraries for pvData and 

pvAccess are available on Linux, Mac OS and Windows, 

for C++, Java and Python. This allowed us to implement 

nED and ADnED in C++ on Linux to obtain the required 

performance, while test and calibration tools are often 

implemented in Python, offering more flexibility. 

While the original SNS beam line neutron event data 

server and clients had no additional network test tools, we 

can now use the generic EPICS V4 command line tools to 

test if a server is online, or to monitor the data on the 

network. 

At the time of writing, the SNS beam lines USANS, 

CORELLI, HYSPEC, VISION and SEQUOIA have been 

updated to use V4 pvData and pvAccess, along with nED 

and ADnED, for the critical first stages of neutron data 

transfer. Operation has been very reliable, especially 

considering that pvData and pvAccess are new 

developments. The SNS is the first facility to utilize these 

technologies in production systems on operating beam 

lines. 
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