
EPICS V4 EVALUATION FOR SNS NEUTRON DATA*

K.U. Kasemir, G.S. Guyotte, M.R.Pearson, ORNL, Oak Ridge, TN37831, USA

Abstract

Version 4 of the Experimental Physics and Industrial

Control System (EPICS [1]) toolkit allows defining

application-specific structured data types (pvData) and

offers a network protocol for their efficient exchange

(pvAccess). We evaluated V4 for the transport of neutron

events from the detectors of the Spallation Neutron

Source (SNS) to data acquisition and experiment

monitoring systems. This includes the comparison of

possible data structures, performance tests, and

experience using V4 in production on a beam line.

MOTIVATION

On SNS beam lines, each neutron event consists of a

pixel ID that identifies the location of the detector where

a neutron was observed, and a time-of-flight measurement

that describes when the neutron was detected relative to

the most recent beam pulse. Depending on the beam line

and its specific configuration, event rates can reach a few

million events per seconds.

This neutron event information needs to be transferred

from detectors to processing stages that provide users of

the experiment with visual feedback, accumulate

information that allows for the automation of the

experiment, and finally stream the events into a data

collection pipeline for long-term storage of the

experiment data.

The original SNS beam line data acquisition software

used a locally developed UDP/IP-based network protocol

to transmit neutron event information [2]. The limited

performance and reliability of this protocol necessitated

an update of the overall data acquisition software [3].

EPICS V4

Based on a proven track record for control of the SNS

accelerator, EPICS had been chosen as a toolkit for the

beam line control system upgrade. While Channel Access

[4], the original EPICS network protocol, has a well

defined and functional set of data objects, this set is fixed

to types suitable for describing a single data point, for

example a temperature reading or voltage set point.

EPICS V4 [5] is an addition to the EPICS toolkit that

introduces an alternative to the existing EPICS V3 data

types and network protocol.

pvData

pvData is the EPICS V4 library for structured data. It

can describe such data in an operating-system

independent way, hold it in memory, and copy complete

or partial data containers. The data can include time

stamps, numeric values, enumerated data, text and alarm

information. Data can also be assembled into arrays and

structures.

Normative Types

pvData allows clients to define nearly arbitrary data

structures, which is ideal for packaging site-specific

information. At the same time it limits the interoperability

of applications. Normative Types are a set of agreed-upon

pvData types that all implementers of V4 applications are

encouraged to support. All original EPICS V3 data types

are described as Normative Types, allowing for an

eventual transition from V3 to V4. In addition, data types

like N-dimensional images or statistical samples that are

often used in higher-level control system applications are

available as Normative Types.

pvAccess

pvAccess is the V4 network protocol that allows for the

exchange of pvData. It is conceptually similar to V3

Channel Access, using UDP/IP for channel name

resolution, and then establishing a TCP/IP connection

between pvAccess servers and clients to exchange data. It

supports basic read and write access. A subscription mode

efficiently updates clients on changes in the data by only

transferring the modified structure elements. Finally, a

combined write/read mode supports remote service calls

by atomically sending parameters, awaiting the execution

of the remote service, then returning the result.

Both pvData and pvAccess have been implemented in

C++ and Java, with additional bindings for Python [6].

SNS NEUTRON DATA

SNS neutron data consists of a list of pixels and time-

of-flights as already described, combined with a

sequential pulse number and the proton charge of the

accelerator pulse that generated these neutrons.

The following pvData structure would be a direct

representation:

// Sequential pulse number

uint64 pulse

 __

*This manuscript has been authored by UT-Battelle, LLC under

Contract No. DE-AC05-00OR22725 with the U.S. Department of

Energy. The United States Government retains and the publisher, by

accepting the article for publication, acknowledges that the United

States Government retains a non-exclusive, paid-up, irrevocable,

world-wide license to publish or reproduce the published form of this

manuscript, or allow others to do so, for United States Government

purposes. The Department of Energy will provide public access to

these results of federally sponsored research in accordance with the

DOE Public Access Plan(http://energy.gov/downloads/doe-public-

access-plan).

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF105

Software Technology Evolution

ISBN 978-3-95450-148-9

947 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

// Proton Charge

double proton_charge

// Event array, each element is

// time-of-flight & pixel

struct

{

 uint32 time_of_flight

 uint32 pixel

} events[]

Each neutron event naturally combines the affected

detector pixel and the time of flight when the event

occurred. The above data structure always provides each

such event as a tuple of { time_of_flight, pixel }.

Some consumers, however, require only a subset of this

tuple. A time-of-flight histogram only needs to inspect the

time_of_flight elements, and a spatial X/Y histogram only

the pixel elements. With the above structure they need to

subscribe to the “events” array and thus always receive

both the time of flight and pixel information.

The following data structure holds the same

information, but allows clients to subscribe to just the

information of interest:

// Time stamp for everything in this

// structure.

// timeStamp.userTag holds

// sequential pulse number

time_t timestamp

// Proton Charge

NTScalar proton_charge

 double value

// Time-of-Flight values for N neutron events

NTScalarArray time_of_flight

 uint[] value

// Pixel IDs for N neutron events

NTScalarArray pixel

 uint[] value

With this optimized data structure, all producers and

consumers agree that the “time_of_flight” and “pixel”

arrays always contain the same number of elements,

because corresponding array elements constitute one

neutron event.

A tool that accumulates the X/Y histogram can now

subscribe to just the “pixel” element, receiving only this

data and thus reducing the network traffic. Tools that

require the complete information can still subscribe to the

whole pvData structure.

In addition, this updated structure packages the

sequential pulse number into the ‘user’ element of the

normative time stamp type, and bases the proton charge,

time of flight and pixel elements on Normative Types,

allowing for compatibility with generic V4 client tools.

pvData allowed us to package the events as either an

array-of-structures or a structure-of-arrays, and we chose

the latter to optimize network traffic for the various use

cases. For certain detector types or operating modes, the

above structure can be extended with additional data

elements, for example to transmit internal detector counts,

which are used during calibration.

PERFORMANCE TESTS

We implemented a V4 server that emits data of the

above format with sequential pulse numbers as well as a

V4 client that subscribes to this data, counting the

received elements and specifically detecting missed pulse

numbers [7].

Figure 1 shows network traffic results from executing

the demonstration server and client on a 1 gigabit

Ethernet link. The server was sending 100 updates per

second, varying the number of events in each of these

updates. When each packet contains 150000 events, 100

times a second, this would equate transmitting 15 million

SNS neutron events per second. Up to about 15 million

events per second, the measured network traffic scaled

linearly. There is very little overhead on the expected

network traffic based on the underlying data size, proving

that pvAccess efficiently serializes the pvData.

As we increased the event rate beyond 15 million SNS

neutron events per second, the network traffic

asymptotically approaches 95 MB per second. The client

starts to indicate lost pulse updates. CPU loads of the

server and client were only about 30%, indicating that we

reached the limit of TCP on 1GigE.

Figure 1: Network traffic on 1GigE network when

sending various amounts of neutron events packaged into

100 updates per second.

On a 10GigE test setup, the simulated SNS neutron

event rate could be increased to about 100 million events

per second before reaching CPU load limits on the server.

GENERIC V4 TOOLS

EPICS V4 includes generic command line tools. The

“pvinfo” command displays the IP address of the V4

WEPGF105 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

948C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

server and the pvData structure of a V4 channel. This is

useful for testing if a V4 server is online, and to check if

the data contains the expected elements.

The “pvget” command can display the complete

structure of a current value, or subscribe to selected

elements. For example, the following command would

show updates to the pixel array of the data sent by the V4

server, on a V4 channel named “neutrons”, used in the

performance tests:

pvget –m –r neutrons.pixel

USE OF V4 AT SNS BEAM LINES

As part of the update to the SNS detector control

software to EPICS, the nED software [8] was developed

to provide a pluggable framework for interfacing to the

various detector configurations found at different beam

lines. One nED module is a V4 server that publishes the

SNS neutron data in the format we described.

There are two primary network clients for this data.

One is a streaming data acquisition system that writes all

neutron events to files for later analysis. The other is

ADnED, an EPICS Area Detector driver which provides

user displays and information for automation [9].

Ideas from the example server code [7] were used to

create the V4 server in nED. Similarly, the example

server was useful to create test data during the

development of ADnED, allowing independent

development and testing of these tools.

CONCLUSION

SNS neutron data can be packaged in pvData. By

comparing different packaging options, we were able to

optimize the network traffic based on the expected types

of network clients.

The performance of pvAccess easily meets our

requirement of about 10M events/sec on 1GigE and

exceeds it on 10GigE.

While the original SNS beam line data acquisition

software was limited to Microsoft Visual C++ on

Windows, the EPICS V4 libraries for pvData and

pvAccess are available on Linux, Mac OS and Windows,

for C++, Java and Python. This allowed us to implement

nED and ADnED in C++ on Linux to obtain the required

performance, while test and calibration tools are often

implemented in Python, offering more flexibility.

While the original SNS beam line neutron event data

server and clients had no additional network test tools, we

can now use the generic EPICS V4 command line tools to

test if a server is online, or to monitor the data on the

network.

At the time of writing, the SNS beam lines USANS,

CORELLI, HYSPEC, VISION and SEQUOIA have been

updated to use V4 pvData and pvAccess, along with nED

and ADnED, for the critical first stages of neutron data

transfer. Operation has been very reliable, especially

considering that pvData and pvAccess are new

developments. The SNS is the first facility to utilize these

technologies in production systems on operating beam

lines.

ACKNOWLEDGMENT

We thank Matej Sekoranja, Marty Kraimer and David

Hickin for their assistance while learning about V4, their

help when implementing the performance test code, and

their fast response whenever we found problems in

pvData and pvAccess.

REFERENCES

[1] http://www.aps.anl.gov/epics/

[2] R.E. Riedel, “Overview of Data Acquisition at the

SNS”, NOBUGS 2004,

http://lns00.psi.ch/nobugs2004/papers/paper00055.pd

f

[3] S.M.Hartman, “SNS Instrument Data Acquisition

And Controls”, ICALEPCS 2013, San Francisco,

CA, USA.

[4] http://www.aps.anl.gov/epics/docs/CAproto.html

[5] L.R. Dalesio et al, “EPICS V4 Expands Support to

Physics Application, Data Acquisition, and Data

Analysis”, ICALEPCS 2011, Grenoble, France.

[6] http://epics-pvdata.sourceforge.net

[7] K. Kasemir, EPICS V4 Example Server and Client

for SNS Neutron Data,

https://github.com/kasemir/EPICSV4Sandbox

[8] G.Guyotte, “nED – EPICS-based Neutron Data

Acquisition and Detector Control Software”, EPICS

Meeting, FRIB, MSU, Lansing, MI, 2015.

[9] M. Pearson, “ADnED – V4 Neutron Event Data in

areaDetector”, EPICS Meeting, FRIB, MSU,

Lansing, MI, 2015.

 https://github.com/areaDetector/ADnED

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF105

Software Technology Evolution

ISBN 978-3-95450-148-9

949 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

