
A MODULAR SOFTWARE ARCHITECTURE FOR APPLICATIONS THAT
SUPPORT ACCELERATOR COMMISSIONING AT MedAustron

M. Hager*, M. Regodic#, EBG MedAustron, Wiener Neustadt, Austria

Abstract
The commissioning and operation of an accelerator

requires a large set of supportive applications. Especially
in the early stages, these tools have to work with
unfinished and changing systems. To allow the
implementation of applications that are dynamic enough
for this environment, a dedicated software architecture,
the Operational Application (OpApp) architecture, has
been developed at MedAustron. The main ideas of the
architecture are a separation of functionality into reusable
execution modules and a flexible and intuitive
composition of the modules into bigger modules and
applications. Execution modules are implemented for the
acquisition of beam measurements, the generation of
cycle dependent data, the access to a database and other
tasks. On this basis, Operational Applications for a wide
variety of use cases can be created, from small helper
tools to interactive beam commissioning applications with
graphical user interfaces. This contribution outlines the
OpApp architecture and the implementation of the most
frequently used applications.

INTRODUCTION
The heart of MedAustron is a synchrotron-based

accelerator. The accelerator provides the possibility to
generate a large range of different ion beams, for example
Proton and Carbon beam with different beam sizes and
hundreds of different energies. A backside of synchrotron-
based accelerators is the high number of components and
the complex control of the beam. The commissioning of
such an accelerator is a laborious task that requires
support by software to be executed efficiently.

One challenge in the development of such applications
is the agility of the commissioning process. While the
commissioning progresses, new components are
integrated, existing ones change and the understanding of
the accelerator and the beam behavior deepens. Software
that supports the process has to be easily adaptable to the
evolving environment. Previous architectural concepts
turned out to be too restrictive for these demands.
Therefore, a new, modular architecture has been
developed at MedAustron, the OpApp architecture.

APPROACH
The OpApp framework is connected to the MedAustron

Accelerator Control System (MACS), [1]. With the
connection to MACS, OpApps can: A) Send commands to
the systems and devices of the accelerator B) Apply
device settings and retrieve state information. C) Request

beam cycles D) Receive measurements and timing
information.

The framework is also connected to a database.
OpApps use the database to store data related to the beam
generation as well as acquired measurements and
accelerator configuration. OpApps also retrieve and
analyze stored data.

Functionality
Main domain of Operational Applications is the beam

commissioning. OpApps can compute settings, like
currents and voltages, for all accelerator devices based on
the optical setup of the accelerator and the desired beam
characteristics. OpApps can also apply the settings,
request beam cycles and measure the characteristics of the
generated beam. With this, OpApps can automatize many
aspects of the measurement-based beam commissioning
workflows. The role of Operational Applications in the
workflow is depicted in Figure 1.

 OpApps contribute to the processing and analysis of
measurements but usually leave complex analysis tasks to
dedicated tools. To provide data to other tools, OpApps
can generate files in a variety of different formats.

Figure 1: The measurement-based beam commissioning
workflow

Although the OpApp concept was developed with beam
commissioning in mind, OpApps are by far not limited to
it. Operational Applications can also be used for:

 Quality Assurance (QA) - OpApps that acquire
measurements and compare them with stored
reference data can be used for a regular QA of the
beam characteristics

 Configuration Management - With a set of
database related execution modules OpApps can,
for example, help the user to import device
specifications into the database or export data for
the Control System

 Accelerator and Beam Monitoring - OpApps can
be used to acquire accelerator and beam data in the

Measurement
analysis

Optics
computations

Cycle
configuration

Cycle
execution

Diagnostic
measurements

OpApps Dedicated tools

* markus.hager@medaustron.at
milovan.regodic@medaustron.at

WEPGF101 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

938C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

background and log this data into the database.
Additionally OpApps can analyse the stored data
and generate reports, for example of the
accelerator performance.

OPAPP ARCHITECTURE
Most beam commissioning activities involve the

execution of the same core tasks, for example: "Request
an accelerator cycle" or "Take a measurement with a
beam diagnostic device". Often the combination of some
core tasks builds an activity that is executed as part of
other commissioning activities. A trajectory measurement,
for example, requires a series of cycle requests and beam
position measurements. The trajectory measurement itself
is used in a trajectory steering where it is combined with
the application of device settings, i.e.: apply settings,
measure the trajectory, (if necessary) apply better settings,
and so on. Based on this realization, the OpApp
architecture enforces a separation of the core
commissioning tasks into dedicated modules and defines
a mechanism that allows a flexible composition of the
different modules.

Core Execution Modules
The core execution modules of the OpApp architecture

are separated into two different layers. On layer,
represented by Executors, is specific to devices and data
structures. The other layer contains Repositories that
encapsulates the interaction with connected systems, like
MACS or the database. The repositories in this layer work
with generic data structures.

An example for the separation into the two layers is the
execution of beam diagnostic measurements. For each
group of beam monitors an own Executor is implemented
that handles the specifics of the measurement, for
example a beam intensity measurement or a profile
measurement. All measurement executors, however, use
the same measurement repository. The measurement
repository implements the generic access to the
measurement interface provided by MACS. Figure 2
shows the main measurement executors and the
repositories they use.

Figure 2: Measurement Executors and the Repositories
they use

Changes in the interface of the connected systems only

affect the repository layer but are not reflected into the
OpApp business logic, which results in highly
maintainable code. The centralization of the accessing
logic also has another big advantage: It provides a way of
testing operational applications without being connected
to the real system. To test OpApps, "Demo" repositories
are implemented that simulate the response of the

different systems. The OpApp framework can switch,
with a simple flag in the code, from the "live" repositories
to the "demo" repositories. After the switch to demo mode
the OpApps work as before but on simulated connections.

Module composition
In the OpApp architecture, all execution modules get

registered in the OpApp framework. All modules also
have access to this registry, to enable access from every
module to every module. This allows a flexible
composition of modules into bigger modules and
applications.

OpApp Language
Operational Applications are usually developed by the

Controls team on request of domain experts. Often the
requested functionality is an automatization of simple but
time consuming routines, like the acquisition of an
extensive set of measurements. If domain experts could
write these routines themselves, they wouldn't have to
request their development and wait for the
implementation.

To allow domain experts to contribute to the
development, the OpApp architecture specifies the
implementation of an own OpApp language. Via the
language the different execution modules can be retrieved
from the OpApp framework and called in an intuitive
way, similar to a natural-language. The trajectory
measurement module, for example, can be executed with
the following line of code:

 MeasureTrajectory.In(beamLine).

Figure 3 shows the concept of the OpApp language and
the composition of the execution modules.

Figure 3: Execution modules and their composition via
the Language

Accelerator Models
OpApps require information about the accelerator.

They must know which elements are available and which
properties of these elements they can influence. OpApps
also require information about beam optical parameters,
for the computation of device settings. To include this

Language
Measure.Profile().Of(device)
MeasureTrajectory.In(MEBT)

Operational Application
Optimize Trajectory

Procedure
Measure Trajectory

Executor
Measure Profile

Repository
Measurement

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF101

Software Technology Evolution

ISBN 978-3-95450-148-9

939 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

information into the framework, the OpApp architecture
uses several models. The code of all models is generated
from the accelerator configuration, to allow an adjustment
of the code when changes in the configuration occur.

One of the models is the accelerator model. This model
contains the elements of the accelerator and their
controllers, for example:

 S1-01-000-MBH (CS-03-031-PCC)
 S1-00-000-MCX

o S1-00-000-MCH (CS-03-211-PCC)
o S1-00-000-MCV (CS-03-246-PCC)

From the model, single elements can be retrieved but
also all elements that belong to a certain part of the
accelerator or a certain device group. The model
information is available in the Language, which allows
commands like: SetCurrentOf(S1-01-000-MBH).To(20);

IMPLEMENTATION
Operational Applications are developed in a Microsoft

.Net environment with C#.

Language
The OpApp Language is implemented with a fluent

API. A fluent API is a programming interface that
employs mechanisms like method chaining to allow the
creation of highly readable code.

Figure 4 shows an example for the implementation of
the fluent API. In the example an OpApp sets the current
for a magnet. The OpApp calls:

 SetCurrent.Of(magnet).To(current).

OpApp

SetCurrent

Language

Of
To

FluentSetCurrent

Device

DeviceTask

CurrentValue

SetCurrentTask SetCurrentExecutor

Retrieved from OpApp framework

creates uses

executes

Figure 4: Implementation of the fluent API

The OpApp framework manages all execution modules

in a Dependency Injection container. For the execution of
the SetCurrent command, the Language retrieves the
SetCurrentExecutor from this container. The name of the
magnet and the current to be applied are stored in a
SetCurrentTask object. This object is forwarded to the
executor in the To() method. The executor uses an
according repository to apply the current to the device via
MACS.

User Interfaces
Graphical User Interfaces (GUI) for Operational

Applications are developed with the .Net WPF
framework.

In applications that require a high interaction with the
user, the GUI can get quite complex. This means that a lot
of interaction logic must be implemented. In addition,
GUI-based OpApps require asynchronous mechanisms to
interact with the execution modules. GUI-based OpApps
are, therefore, developed by software engineers.

OpApps that execute simpler routines only require
some input values but not a complex user interface. To
allow the creation of simpler, language-based applications
by domain experts, a common user interface has been
implemented together with a library of visualization
modules for different input parameters. OpApps authors
mark the required input parameters in the code with
special attributes. The user interface reads the attributes
and automatically displays the according fields. Figure 5
and Figure 6 show an example of the code attributes and
the resulting display in the user interface.
[ElementListParameter(AllChecked = false,
 DisplayName = "Monitors", Class = new ElementClass[] {
 ElementClass.QIM, ElementClass.ORB, ElementClass.QPM,
 ElementClass.SFX, })]
public List<BDElement> Monitors { get; set; }

Figure 5: Example of parameter attribute

Figure 6: Automatically generated user interface

RESULTS
Around 1.5 man years of work have already been spent

on the development of Operational Applications. During
this time the framework has been developed, together
with about 25 Atomic OpApps, one Complex application
and one Monitoring application.

Atomic OpApps
Atomic OpApps are started via a common, generic user

interface. Atomic OpApps use the OpApp language and
can potentially be written by domain experts. Examples
for routines executed by Atomic OpApps are trajectory
measurements, kick response measurements and checks
for incorrect device settings. Figure 7 shows an example
for a trajectory measurement written with the OpApp
language.

var trajectory = CreateEmptyTrajectory();
foreach (var monitor in ProfileMonitors.AllIn(transferLine))
{
 var beamProfile = MeasureProfile.With(monitor);
 var position =
 CalculateBeamPosition
 .WithBias(percent: 15).From(beamProfile);
 trajectory.AddPosition(postion);
}

Figure 7: Example for a fluent trajectory measurement

WEPGF101 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

940C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Complex OpApps
Complex OpApps are interactive applications that are

operated via their own user interfaces. This type of
applications uses the execution modules but not
necessarily the language.

One Complex application has already been developed,
the Beam Scan OpApp. Main functionality of the OpApp
is the application of device settings in a given range and a
subsequent measurement of the beam. In this way, the
OpApp allows the determination of the setting that results
in the best beam characteristics.

The Beam Scan OpApp has turned out to be extremely
helpful. The application supports the scan of many optical
parameters and a wide range of device, monitor
combinations. 8 shows a scan of a synchrotron RF
system setting with a beam current measurement.

Figure 8: Screenshot of the Beam Scan OpApp

Monitoring OpApps
Monitoring OpApps continuously collect and store

machine and beam related data. They run on dedicated
machines and don’t require any user interaction.

The Particle Logger is the first Monitoring OpApp. The
application is composed of two parts. One part
parasitically acquires measurements of the beam current
in the synchrotron and logs this information together with
beam cycle data into the database. The second part is an
analysis application that retrieves this data, displays it and
generates performance indicators. One indicator for the
accelerator performance is the number of cycles in a
given period in that more than a certain number of
particles were measured in the beam. Figure 9 shows an
example of a chart that contains the number of particles in
the cycles generated over 24 hours.

Figure 9: Screenshot of the Particle Logger Analysis
application

Operational Applications have also been presented at
the IPAC 2015. The according contribution, [2], contains
further OpApp examples.

OUTLOOK
The OpApp development at MedAustron will continue.

The OpApp framework will be extended and improved,
for example, with a synchronization mechanism between
asynchronously executed tasks.

Despite of the availability of the fluent language,
OpApps have so far only been developed by software
engineers. In order to encourage the participation of
domain experts, an out-of-the-box development
environment and user guides will be prepared.

Upcoming OpApps will focus on advanced beam
commissioning tasks and on aspects of the accelerator
operation, mainly: Quality Assurance, Configuration
Management and Accelerator Monitoring.

With the integration of dosimetric measurement
equipment and the Treatment Control System, OpApps
could in the future also be used for treatment-related QA
procedures and allow the tuning of the accelerator from a
treatment perspective.

CONCLUSION
The OpApp architecture has proven to be an excellent

basis for the development of software solutions that
support the commissioning and operation of the
MedAustron accelerator. The modular design, enforced
by the architecture, has shown to allow a very quick
adaptation and development of applications.

OpApps already build an indispensable set of tools for
the commissioning and operation of the MedAustron
accelerator – and their importance will continue to grow,
as there are many supportive applications waiting to be
developed.

ACKNOWLEDGEMENTS
We would like to thank A. Wastl (MedAustron) for his

important contributions to the OpApp development and
K. Fuchsberger (CERN) for his help in working out the
initial OpApp concept. We would also like to thank J.
Junuzovic (MedAustron) for her support.

REFERENCES
[1] J. Gutleber, et al., The MedAustron Accelerator

Control System, Proceedings of ICALEPCS 2011,
Grenoble, France

[2] A. Wastl, M. Hager, M. Regodic, Operational
Applications – A Software Framework used for the
Commissioning of the MedAustron Accelerator,
Proceedings of IPAC 2015, Richmond, VA, USA

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF101

Software Technology Evolution

ISBN 978-3-95450-148-9

941 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

