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Abstract 
The commissioning and operation of an accelerator 

requires a large set of supportive applications. Especially 
in the early stages, these tools have to work with 
unfinished and changing systems. To allow the 
implementation of applications that are dynamic enough 
for this environment, a dedicated software architecture, 
the Operational Application (OpApp) architecture, has 
been developed at MedAustron. The main ideas of the 
architecture are a separation of functionality into reusable 
execution modules and a flexible and intuitive 
composition of the modules into bigger modules and 
applications. Execution modules are implemented for the 
acquisition of beam measurements, the generation of 
cycle dependent data, the access to a database and other 
tasks. On this basis, Operational Applications for a wide 
variety of use cases can be created, from small helper 
tools to interactive beam commissioning applications with 
graphical user interfaces. This contribution outlines the 
OpApp architecture and the implementation of the most 
frequently used applications. 

INTRODUCTION 
The heart of MedAustron is a synchrotron-based 

accelerator. The accelerator provides the possibility to 
generate a large range of different ion beams, for example 
Proton and Carbon beam with different beam sizes and 
hundreds of different energies. A backside of synchrotron-
based accelerators is the high number of components and 
the complex control of the beam. The commissioning of 
such an accelerator is a laborious task that requires 
support by software to be executed efficiently.  

One challenge in the development of such applications 
is the agility of the commissioning process. While the 
commissioning progresses, new components are 
integrated, existing ones change and the understanding of 
the accelerator and the beam behavior deepens. Software 
that supports the process has to be easily adaptable to the 
evolving environment. Previous architectural concepts 
turned out to be too restrictive for these demands. 
Therefore, a new, modular architecture has been 
developed at MedAustron, the OpApp architecture.  

APPROACH 
The OpApp framework is connected to the MedAustron 

Accelerator Control System (MACS), [1]. With the 
connection to MACS, OpApps can: A) Send commands to 
the systems and devices of the accelerator B) Apply 
device settings and retrieve state information. C) Request 

beam cycles D) Receive measurements and timing 
information.  

The framework is also connected to a database. 
OpApps use the database to store data related to the beam 
generation as well as acquired measurements and 
accelerator configuration. OpApps also retrieve and 
analyze stored data. 

Functionality 
Main domain of Operational Applications is the beam 

commissioning. OpApps can compute settings, like 
currents and voltages, for all accelerator devices based on 
the optical setup of the accelerator and the desired beam 
characteristics. OpApps can also apply the settings, 
request beam cycles and measure the characteristics of the 
generated beam. With this, OpApps can automatize many 
aspects of the measurement-based beam commissioning 
workflows. The role of Operational Applications in the 
workflow is depicted in Figure 1. 

 OpApps contribute to the processing and analysis of 
measurements but usually leave complex analysis tasks to 
dedicated tools. To provide data to other tools, OpApps 
can generate files in a variety of different formats.  

 
Figure 1: The measurement-based beam commissioning 
workflow 

Although the OpApp concept was developed with beam 
commissioning in mind, OpApps are by far not limited to 
it.  Operational Applications can also be used for:  

 Quality Assurance (QA) - OpApps that acquire 
measurements and compare them with stored 
reference data can be used for a regular QA of the 
beam characteristics 

 Configuration Management - With a set of 
database related execution modules OpApps can, 
for example, help the user to import device 
specifications into the database or export data for 
the Control System 

 Accelerator and Beam Monitoring - OpApps can 
be used to acquire accelerator and beam data in the 
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background and log this data into the database. 
Additionally OpApps can analyse the stored data 
and generate reports, for example of the 
accelerator performance. 

OPAPP ARCHITECTURE 
Most beam commissioning activities involve the 

execution of the same core tasks, for example: "Request 
an accelerator cycle" or "Take a measurement with a 
beam diagnostic device".  Often the combination of some 
core tasks builds an activity that is executed as part of 
other commissioning activities. A trajectory measurement, 
for example, requires a series of cycle requests and beam 
position measurements. The trajectory measurement itself 
is used in a trajectory steering where it is combined with 
the application of device settings, i.e.: apply settings, 
measure the trajectory, (if necessary) apply better settings, 
and so on. Based on this realization, the OpApp 
architecture enforces a separation of the core 
commissioning tasks into dedicated modules and defines 
a mechanism that allows a flexible composition of the 
different modules.  

Core Execution Modules 
The core execution modules of the OpApp architecture 

are separated into two different layers. On layer, 
represented by Executors, is specific to devices and data 
structures. The other layer contains Repositories that 
encapsulates the interaction with connected systems, like 
MACS or the database. The repositories in this layer work 
with generic data structures.  

An example for the separation into the two layers is the 
execution of beam diagnostic measurements. For each 
group of beam monitors an own Executor is implemented 
that handles the specifics of the measurement, for 
example a beam intensity measurement or a profile 
measurement. All measurement executors, however, use 
the same measurement repository. The measurement 
repository implements the generic access to the 
measurement interface provided by MACS. Figure 2 
shows the main measurement executors and the 
repositories they use. 

 
Figure 2: Measurement Executors and the Repositories 
they use 

 
Changes in the interface of the connected systems only 

affect the repository layer but are not reflected into the 
OpApp business logic, which results in highly 
maintainable code. The centralization of the accessing 
logic also has another big advantage: It provides a way of 
testing operational applications without being connected 
to the real system. To test OpApps, "Demo" repositories 
are implemented that simulate the response of the 

different systems. The OpApp framework can switch, 
with a simple flag in the code, from the "live" repositories 
to the "demo" repositories. After the switch to demo mode 
the OpApps work as before but on simulated connections. 

Module composition 
In the OpApp architecture, all execution modules get 

registered in the OpApp framework. All modules also 
have access to this registry, to enable access from every 
module to every module.  This allows a flexible 
composition of modules into bigger modules and 
applications.  

OpApp Language 
Operational Applications are usually developed by the 

Controls team on request of domain experts. Often the 
requested functionality is an automatization of simple but 
time consuming routines, like the acquisition of an 
extensive set of measurements. If domain experts could 
write these routines themselves, they wouldn't have to 
request their development and wait for the 
implementation.  

To allow domain experts to contribute to the 
development, the OpApp architecture specifies the 
implementation of an own OpApp language. Via the 
language the different execution modules can be retrieved 
from the OpApp framework and called in an intuitive 
way, similar to a natural-language. The trajectory 
measurement module, for example, can be executed with 
the following line of code:  

 MeasureTrajectory.In(beamLine). 

Figure 3 shows the concept of the OpApp language and 
the composition of the execution modules. 

 
Figure 3: Execution modules and their composition via 
the Language 

Accelerator Models 
OpApps require information about the accelerator. 

They must know which elements are available and which 
properties of these elements they can influence. OpApps 
also require information about beam optical parameters, 
for the computation of device settings. To include this 
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information into the framework, the OpApp architecture 
uses several models. The code of all models is generated 
from the accelerator configuration, to allow an adjustment 
of the code when changes in the configuration occur. 

One of the models is the accelerator model. This model 
contains the elements of the accelerator and their 
controllers, for example: 

 S1-01-000-MBH (CS-03-031-PCC) 
 S1-00-000-MCX  

o S1-00-000-MCH (CS-03-211-PCC) 
o S1-00-000-MCV (CS-03-246-PCC) 

From the model, single elements can be retrieved but 
also all elements that belong to a certain part of the 
accelerator or a certain device group. The model 
information is available in the Language, which allows 
commands like:  SetCurrentOf(S1-01-000-MBH).To(20); 

IMPLEMENTATION 
Operational Applications are developed in a Microsoft 

.Net environment with C#. 

Language 
The OpApp Language is implemented with a fluent 

API. A fluent API is a programming interface that 
employs mechanisms like method chaining to allow the 
creation of highly readable code.   

Figure 4 shows an example for the implementation of 
the fluent API. In the example an OpApp sets the current 
for a magnet. The OpApp calls:  

 SetCurrent.Of(magnet).To(current).  

OpApp

SetCurrent

Language

Of
To

FluentSetCurrent

Device

DeviceTask

CurrentValue

SetCurrentTask SetCurrentExecutor

Retrieved from OpApp framework

creates uses

executes

Figure 4: Implementation of the fluent API 

 
The OpApp framework manages all execution modules 

in a Dependency Injection container. For the execution of 
the SetCurrent command, the Language retrieves the 
SetCurrentExecutor from this container. The name of the 
magnet and the current to be applied are stored in a 
SetCurrentTask object. This object is forwarded to the 
executor in the To() method. The executor uses an 
according repository to apply the current to the device via 
MACS. 

User Interfaces 
Graphical User Interfaces (GUI) for Operational 

Applications are developed with the .Net WPF 
framework.  

In applications that require a high interaction with the 
user, the GUI can get quite complex. This means that a lot 
of interaction logic must be implemented. In addition, 
GUI-based OpApps require asynchronous mechanisms to 
interact with the execution modules. GUI-based OpApps 
are, therefore, developed by software engineers.  

OpApps that execute simpler routines only require 
some input values but not a complex user interface. To 
allow the creation of simpler, language-based applications 
by domain experts, a common user interface has been 
implemented together with a library of visualization 
modules for different input parameters. OpApps authors 
mark the required input parameters in the code with 
special attributes. The user interface reads the attributes 
and automatically displays the according fields. Figure 5 
and Figure 6 show an example of the code attributes and 
the resulting display in the user interface.  
[ElementListParameter(AllChecked = false,  
     DisplayName = "Monitors", Class = new ElementClass[] {  
     ElementClass.QIM, ElementClass.ORB, ElementClass.QPM,  
     ElementClass.SFX, })] 
public List<BDElement> Monitors { get; set; } 

Figure 5: Example of parameter attribute 

 
Figure 6: Automatically generated user interface 

RESULTS 
Around 1.5 man years of work have already been spent 

on the development of Operational Applications. During 
this time the framework has been developed, together 
with about 25 Atomic OpApps, one Complex application 
and one Monitoring application.  

Atomic OpApps 
Atomic OpApps are started via a common, generic user 

interface. Atomic OpApps use the OpApp language and 
can potentially be written by domain experts. Examples 
for routines executed by Atomic OpApps are trajectory 
measurements, kick response measurements and checks 
for incorrect device settings. Figure 7 shows an example 
for a trajectory measurement written with the OpApp 
language. 

var trajectory = CreateEmptyTrajectory(); 
foreach (var monitor in ProfileMonitors.AllIn(transferLine)) 
{ 
     var beamProfile = MeasureProfile.With(monitor); 
     var position = 
          CalculateBeamPosition 
             .WithBias(percent: 15).From(beamProfile); 
     trajectory.AddPosition(postion); 
} 

Figure 7: Example for a fluent trajectory measurement 
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Complex OpApps 
Complex OpApps are interactive applications that are 

operated via their own user interfaces. This type of 
applications uses the execution modules but not 
necessarily the language.  

One Complex application has already been developed, 
the Beam Scan OpApp. Main functionality of the OpApp 
is the application of device settings in a given range and a 
subsequent measurement of the beam. In this way, the 
OpApp allows the determination of the setting that results 
in the best beam characteristics.  

The Beam Scan OpApp has turned out to be extremely 
helpful. The application supports the scan of many optical 
parameters and a wide range of device, monitor 
combinations.  8 shows a scan of a synchrotron RF 
system setting with a beam current measurement. 

 
Figure 8: Screenshot of the Beam Scan OpApp 

Monitoring OpApps 
Monitoring OpApps continuously collect and store 

machine and beam related data. They run on dedicated 
machines and don’t require any user interaction.  

The Particle Logger is the first Monitoring OpApp. The 
application is composed of two parts. One part 
parasitically acquires measurements of the beam current 
in the synchrotron and logs this information together with 
beam cycle data into the database. The second part is an 
analysis application that retrieves this data, displays it and 
generates performance indicators. One indicator for the 
accelerator performance is the number of cycles in a 
given period in that more than a certain number of 
particles were measured in the beam. Figure 9 shows an 
example of a chart that contains the number of particles in 
the cycles generated over 24 hours. 

 
Figure 9: Screenshot of the Particle Logger Analysis 
application 

Operational Applications have also been presented at 
the IPAC 2015. The according contribution, [2], contains 
further OpApp examples. 

 

OUTLOOK 
The OpApp development at MedAustron will continue. 

The OpApp framework will be extended and improved, 
for example, with a synchronization mechanism between 
asynchronously executed tasks.  

Despite of the availability of the fluent language, 
OpApps have so far only been developed by software 
engineers. In order to encourage the participation of 
domain experts, an out-of-the-box development 
environment and user guides will be prepared.  

Upcoming OpApps will focus on advanced beam 
commissioning tasks and on aspects of the accelerator 
operation, mainly: Quality Assurance, Configuration 
Management and Accelerator Monitoring. 

With the integration of dosimetric measurement 
equipment and the Treatment Control System, OpApps 
could in the future also be used for treatment-related QA 
procedures and allow the tuning of the accelerator from a 
treatment perspective.  

CONCLUSION  
The OpApp architecture has proven to be an excellent 

basis for the development of software solutions that 
support the commissioning and operation of the 
MedAustron accelerator. The modular design, enforced 
by the architecture, has shown to allow a very quick 
adaptation and development of applications.  

OpApps already build an indispensable set of tools for 
the commissioning and operation of the MedAustron 
accelerator – and their importance will continue to grow, 
as there are many supportive applications waiting to be 
developed. 
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