
ILLUSTRATE THE FLOW OF MONITORING DATA THROUGH THE

MeerKAT TELESCOPE CONTROL SOFTWARE

M. Slabber∗, SKA SA, Cape Town, South Africa

M.T. Ockards†, SKA SA, Cape Town, South Africa

Abstract

The MeerKAT telescope [1], under construction in South

Africa, is comprised of a large set of elements. The elements

expose various sensors to the Control and Monitoring (CAM)

system, and the sampling strategy set by CAM per sensor

varies from several samples a second to infrequent updates.

This creates a substantial volume of sensor data that needs to

be stored and made available for analysis. We depict the flow

of sensor data through the CAM system, showing the various

memory buffers, temporary disk storage and mechanisms to

permanently store the data in HDF5 format on the network

attached storage (NAS).

ELEMENTS THAT MAKE UP CAM

Sensor

Sensors are either physical sensors on devices, aggre-

gated/calculated or internal metrics from software compo-

nents. Some examples of physical sensors are tilt, tempera-

ture, wind speed and motor rpm. It is estimated that once

MeerKAT is completed there will be close to 80 000 sensors

in the system.

Device

Devices are the hardware that constitute the telescope.

Devices are engineered to have Ethernet interfaces and can

communicate via Karoo Array Telescope Communication

Protocol (KATCP). Where devices do not have KATCP

interfaces, translators are created [2]. The devices expose

sensors and requests on the KATCP interface [3].

Component

CAM consists of many distinct components. Components

are the standalone building blocks of the CAM system. Inter-

action with components are done with the KATCP protocol.

The components expose sensors and requests over KATCP.

Node

Nodes are virtual containers on the host hypervisor [4].

The MeerKAT nodes run Ubuntu 14.04 LTS Linux operating

system. When MeerKAT is fully deployed, it is expected to

have 13 nodes.

Proxy

Proxy components make sensors and requests on devices

available to the CAM system. Sensors and requests from the

devices can be discarded or even rolled up into new sensors

∗ martin@ska.ac.za
† tockards@ska.ac.za

Sensor

Device

Proxy

Monitor

Redis

Pulld handler

PostgreSQL

Pulld manager

HDF Server

NAS

Figure 1: The progression of storing a sample, from sensor

to archive.

and requests on the proxy component. The proxy component

also exposes sensors and requests of its own.

Controller

Controller components connect to other subsystems. As

with a proxy component, sensors and requests from the sub-

system can be exposed or rolled up into new sensors and

requests. Controllers always use KATCP to communicate to

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF065

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

849 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



the subsystem. The subsystem is responsible for presenting

a central interface to which CAM can connect in order to

gather sensor samples and use requests to initiate action.

Examples of subsystems are the Correlator Beam Former

and Science Data Processing.

Monitor

On each node in the CAM system a monitor component

gathers sensor samples at a configured sampling rate from

the other components on the same node. The gathered sam-

ples are written to a memory buffer on the node.

Redis

Redis is used as a memory buffer on each of the nodes in

the CAM system. Samples are written to the memory buffer

by the monitoring component.

Pulld

Pulld component on the storage node that moves the sam-

ples from the memory buffers to the central database. A

sub-process of Pulld, Pulld handler, is started for each of the

nodes in the system. Pulld will archive samples from the

storage node and send it to the HDF Server to be archived.

The archiving is done in the Pulld manager on a scheduled

basis.

PostgreSQL

PostgreSQL is used as the central database for sensor

samples and sensor metadata [5]. Samples are stored in the

central database until they are archived to files on the network

attached storage (NAS). The archived data is presented in the

database as a foreign table; a foreign data wrapper (FDW)

was developed to achieve this. Queries to the archive table

are translated by the FDW and sent to the HDF Server; the

response from the HDF Server is translated for presentation

in the database. The FDW was developed to provide a read

only interface to the HDF Server.

HDF Server

This component is responsible for performing all the

read and write operations on the archive files. The archive

files are HDF5 formatted files stored on the NAS. The

files are stored in a hierarchical directory structure. An

archive file is created for each component of the sys-

tem per day. e.g. For subarray1 on 7 March 2015

the file 2015/03/07/2015-03-07_subarray1.h5 will be

created.

NAS

The NAS is a standalone storage unit attached to the net-

work. An export on the NAS is mounted on the storage node

using network file system (NFS). The NAS is accessible over

a 10Gbps Ethernet network.

Query Interface

Two query interfaces were developed to provide API’s

for accessing historical sensor data. The first uses KATCP

as the access protocol and runs on the storage node, this

interface is used by other CAM components. The second

interface was developed as part of the portal system and

provides an HTTP interface for the Graphical User Interface

(GUI) [6] and external systems. Both query interfaces use

the PostgreSQL database for all queries.

SENSOR SAMPLE

It is important to understand what a sample is in order to

comprehend how the samples are transported, stored and

made available for queries. Each sensor reading processed

by the CAM system is called a sample. A sample always has

a sensor name, sample timestamp, value timestamp, status

and a value.

SENSOR_NAME A normalised form of the sensor’s

name. Non-alphanumeric characters are replaced by the ‘_’

character; the case of alphabetic characters is maintained.

The original KATCP name of the sensor is maintained as an

attribute of the sensor with the sensor meta data.

SAMPLE_TS The timestamp of when the sample was

first processed by the CAM system. It is a UNIX timestamp,

the time in seconds since the epoch of 1 January 1970 00:00

UTC. SAMPLE_TS is always unique for a sensor and pre-

sented as a floating point number, the number of decimal

places (fraction of a second) used is dependent on the host

operating system.

VALUE_TS A UNIX timestamp when the acquisition

was performed. VALUE_TS and SAMPLE_TS are the same

or within milliseconds of one another if the acquisition was

performed in sync with the CAM sampling strategy. When

a sensor is over-sampled it is possible to have the same

consecutive VALUE_TS, STATUS and VALUE.

STATUS An indication of the state of the sensor when

the sample was taken. Can have a value of UNKNOWN,

WARN, NOMINAL, FAILURE, INACTIVE, ERROR, UN-

REACHABLE as defined in the KATCP [3] specifications.

VALUE The value of the sensor at the time of acqui-

sition (VALUE_TS). The data type of VALUE is typically

one of float, integer, string, or boolean; additional types are

allowed by the KATCP specifications but they are less com-

monly used. It was decided that the storage system will treat

all values as strings until the archiving is performed. In the

archive, data is stored as float, integer, boolean or string; all

other types are stored as strings in the archived files.

WEPGF065 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

850C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation



SAMPLING STRATEGIES

CAM inherits the sampling strategies of the KATCP pro-

tocol. A client connected to the KATCP interface on a

device or a component (the server) can set a sampling strat-

egy for the sensors on the server; sensor samples will be

sent by the server at the requested sampling rate. Several

sampling strategies are available in KATCP. KATCP defines

the strategies none, auto, period, event, differential,

event-rate and differential-rate. Examples are

<period P> the value is reported every P seconds, <event>

the value is reported when it changes and <event-rate SP

LP> the value is reported when it changes or every LP sec-

onds. For the full details on sampling strategies see the

KATCP specifications [3].

The sampling strategy used by the monitor component

can be set per sensor in the central configuration. Sensors

that do not have a configured sampling strategy are sampled

every 10 seconds; for sensors of boolean and string types

event-rate 0 600 is used.

PROGRESSION THROUGH THE

STORAGE SYSTEM

The following key words are used in Figures 2, 3 and 4.

• Monitor component has an instance running on every

node.

• Redis memory database is installed on every node.

• Pulld handler has an instance on the storage node for

every node in the system.

• Pulld manager has one instance on the storage node.

• DB is the central database on the storage node.

• HDF Server is running only on the storage node.

• NAS is the file storage system made available over the

network.

• Query interface has instances on the storage node and

the portal node.

The monitor process connects to all the CAM services on

the node on which it is running . Based on configuration, the

monitor process subscribes to sensors and receives updates

based on the requested sampling strategy. In Figure 2 (it

is shown) for every new update the monitor gets from a

sensor, the sample is written to the memory database (1).

The memory database is a buffer, it allows for very fast

writes and prevents blocking the monitor process. Because

of the memory buffer, Pulld does not need any knowledge

of the write rate of the monitor process. Pulld queries (2)

Monitor Redis

DB

Pulld

handler

Pulld

manager

Query

HDF

Server
NAS

1 2

3

4

5

6

Figure 2: Moving samples from monitoring component to

the central database.

the memory database and writes the received samples (3) to

the database (4) on the storage node. When the write to the

database on the storage node is successful (5) the samples

are deleted (6) from the memory database on the relevant

node.

Monitor Redis

DB

Pulld

handler

Pulld

manager

Query

HDF

Server
NAS

1

2

3

4 5

6

Figure 3: Archiving data from storage database to NAS.

Based on configuration, Pulld will start an archive task at

a scheduled time (Fig. 3). The archive task will determine

what data should be archived (1); based on a configurable

sample age parameter. Pulld will retrieve data (2) from the

database and write this data to the HDF Server (3). When the

HDF Server acknowledges (5) that data has been successfully

written to the NAS (4), the data will be deleted from the

database (6).

Central Database to the Archive

Monitoring Component to Central Database

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF065

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

851 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Monitor Redis

DB

Pulld

handler

Pulld

manager

Query

HDF

Server
NAS

1

2

3

4

5

Figure 4: Query data across storage database and archive on

NAS.

Requests from other components for historical sensor sam-

ples are done against the query interface (Fig. 4). The query

interface is connected to the database and will create the

appropriate SQL query and run the SQL against the database

(1). If the query requires archived data, the database has a

foreign table that contains no data, but provides an interface

to the HDF server. It uses the FDW to achieve this. The

FDW will rewrite the query into a syntax that can be inter-

preted by the HDF Server (2). The HDF Server will read the

appropriate files from the NAS (3) and return the samples to

the database (4). The database will add the returned samples

to the response and return (5) to the query interface.

REFERENCES
[1] R.S. Booth, W.J.G. de Blok, J.L. Jonas, and B. Fanaroff,

“MeerKAT Key Project Science, Specifications, and Propos-
als,” ArXiv e-prints, pp. 1–16, 2009. [Online]. Available:
http://arxiv.org/abs/0910.2935

[3] S. Cross, R. Crida, T. Bennett, M. Welz, and T. Kusel, “Guide-
lines for Communication with Devices,” 2012. [Online]. Avail-
able: http://pythonhosted.org/katcp/_downloads/
NRF-KAT7-6.0-IFCE-002-Rev5.pdf

[4] N. Marais, “Virtualization and deployment management for
the KAT-7 / MeerKAT control and monitoring system,” in
Proceedings of ICALEPC 2013, paper THCOBA06, 2013.

[5] M. Slabber, “Overview of the monitoring data archive used
on the MeerKAT telescope,” presented at ICALEPCS’15,

2015.
[6] M. Alberts and F. Joubert, “The MeerKAT graphical user

interface technology stack,” presented at ICALEPCS’15, Mel-

[2] L. van den Heever, “MeerKAT Control And Monitoring - De-
sign Concepts and Status,” in Proceedings of ICALEPC 2013,
paper MOCOAAB06, 2013.

Melbourne, Australia, paper THHD3O06, these proceedings,

bourne, Australia, paper THHC3O01, these proceedings, 2015.

Query the Samples

WEPGF065 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

852C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation


