
BEAM TRAIL TRACKING AT FERMILAB
Dennis J. Nicklaus, Linden Ralph Carmichael, Richard Neswold, Zongwei Yuan.

Fermilab, Batavia, IL 60510, USA

Abstract
We present a system for acquiring and sorting data

from select devices depending on the destination of each
particular beam pulse in the Fermilab accelerator chain.
The 15 Hz beam that begins in the Fermilab ion source
can be directed to a variety of additional accelerators,
beam lines, beam dumps, and experiments. We have
implemented a data acquisition system that senses the
destination of each pulse and reads the appropriate beam
intensity devices so that profiles of the beam can be
stored and analysed for each type of beam trail. We
envision utilizing this data long term to identify trends in
the performance of the accelerators.

INTRODUCTION
The Fermilab particle beam starts in its ion source, and

from there it can be directed to a wide variety of
beamlines and experiments. This paper describes the
software created to track the accelerator efficiencies
(amount of beam transported without loss) along the
various beamlines and for the designated destinations. We
use the term trail to designate each of the potential uses
and destinations.

Trails can have a wide range of complexity. The
simplest trails consist of only one 15Hz Linac beam
pulse, and might go to a local beam dump, or be used to
study Linac performance. The more complicated pulses
involve multiple 15Hz pulses from the Linac, and involve
the Linac, Booster, Recycler, and Main Injector
accelerators as shown in Fig. 1. Final destinations include
various beam dumps along the way, a neutron therapy
target, short and long baseline neutrino beamlines, the
muon campus experiments, or a test beam area.

Figure 1: The Fermilab Accelerator Complex.

Collection of these more complex trails is also
complicated by the fact that some of the simpler 15Hz
pulse trails may occur while the more complicated trail is
still underway in the downstream accelerators.

The process starts with the overall beam pulse planning

controlled by Fermilab’s Sequencer, which coordinates
the production of timelines generated by the Time Line
Generator (TLG) with other accelerator activities. At the
implementation level, a timeline is a series of private bus
events (TCLK). Various accelerator components are
programmed to respond to these events to send the beam
to the desired location. These systems have long been in
routine use for accelerator operation.

For this beam trail tracking, we added or enhanced
several software programs. To start the process, the TLG
now encodes the trail number onto our MDAT data bus
when it begins instructions for each beam pulse. The
Beam Cycle Coordinator (BCC) decodes that trail number
and makes it available to our Acnet control system, in
addition to many digital status bits that indicate readiness
of various beamlines, components, permits, and
interlocks. These status indicators also show whether the
accelerator chain was ready and beam pulse had the
opportunity to follow the indicated trail, or whether it had
to be aborted.

With the above groundwork laid, the main
implementation for beam trail tracking begins. The
tracking software has three main components:

 The Correlator, which collects data from
Acnet-connected devices, groups together
readings from the same pulse, and sorts them
by trail number.

 The Acnet Formatter, which takes the data
from the Correlator, aggregates and re-formats
it and makes it available to Acnet.

 The Database Interface, which reads the data
over Acnet and stores it into a relational
database. Along the way, this also calculates
various sums and means, and we have
developed a user interface to help retrieve data
of interest.

BACKGROUND
Main Injector Ramp Cycle

In order to understand some of the requirements of the
trail tracking software, it is useful to have a basic
understanding of our Main Injector ramp cycle. The Main
Injector accelerates protons from 8 GeV to 120 GeV,
taking a little over one second for this acceleration.
While it is ramping up and down, multiple batches of
protons from the Booster can be injected into the Recycler

WEPGF061 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

838C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

and stacked into a more intense beam. When the Main
Injector has finished the previous ramp cycle, it is
injected with the new beam of 8 GeV protons from the
Recycler. Overlapping the filling of the Recycler with the
ramping of the Main Injector decreases the average full
acceleration time for each beam pulse, and has enabled
Fermilab to achieve record beam power levels.

Not every 120GeV trail uses the Recycler in this way.
We can also inject directly from Booster to the Main
Injector.

IMPLEMENTATION
Correlator

The initial data acquisition, the sorting by trail number,
and the correlation into the appropriate 15Hz time slots is
all done in the Correlator. Most of the data from the Linac
and Booster is collected at 15Hz. Some of the other data
is only collected upon a particular TCLK event, or on one
of several different TCLK events, depending on the trail.
We primarily collect beam intensity measurements from a
variety of instrument types, although other readings such
as the BCC status bits are also included. All data is
collected through Fermilab’s Acnet control system

Since the readings come from a variety of instruments
connected to different front-ends, Acnet doesn’t guarantee
that the readings will always arrive in the same order, or
even that a reading from one front-end will even arrive in
the same 15Hz time slice as all the other readings from
that same slice. The load on a particular node, or
unforeseen network delays can all contribute to this. So
in order to collect the maximal amount of data, with as
few rejections for tardiness as possible, the Correlator
maintains a sliding window of time slices it is currently
collecting. When one slice is “full” (meaning all devices
for that trail have arrived) or when that slice falls off the
end of the sliding window, that 15Hz trail is collected for
further processing and the time slice is closed. The
Correlator follows the useful rule that collections can’t go
back in time, so when one slice is declared full, all
previous unfilled slices in the window are also closed out
for processing and any uncollected devices are noted.
Thus the system is somewhat fault tolerant. If one
response is dropped by the network, or if a particular
front-end is temporarily unresponsive, data collection and
processing can still proceed.

Another fault-tolerant adaptation that the Correlator
performs relates to errors from devices. If one device
replies with some error, then the Correlator will attempt
to restart the collection process in hopes that the error was
only temporary and has cleared. If a device is repeatedly
in error, then the Correlator masks that device off the list
of requested devices for all trails. Periodically, data
collection is retried in hopes that the error condition has
cleared and the device’s reading can re-join the data set.
Of course, faults in some crucial devices, such as the trail
number, cannot be tolerated, and processing has to always
wait on those errors to clear before proceeding.

Some of our most common trails will begin at the ion
source, go through the Linac and Booster, then into the
Recycler for beam stacking, then into the Main Injector
for final acceleration, and then to another final
destination, such as the long-baseline neutrino beamline.
However, as noted above in the explanation of the Main
Injector ramp cycle, one trail of beam may still be in the
Main Injector while another trail begins assembling in the
Recycler. Or while the Main Injector ramp is occurring,
another trail through the Booster to the short baseline
neutrino beamline may occur. The Correlator has to deal
with these overlaps, making sure that the appropriate
trails all stay sorted, and dealing with the fact that one
Recycler and Main Injector fill will include multiple
15Hz pulses from the Linac-Booster chain. The software
uses the term super-trail to describe any trail which
includes multiple 15Hz batches.

When the Correlator knows it is finished with any trail
or super-trail, they are sent off to the Acnet Formatter for
further processing. The end of a super-trail is typically
indicated by some TCLK event, which the Correlator has
to monitor.

The devices to be read, acquisition frequencies or
triggering events, devices needed per trail, and
classifications of trails are all driven by a human-readable
configuration file. Thus it is straight-forward to change
the devices requested for any particular trail.

Acnet Formatter
The Acnet Formatter is much less complicated than the

Correlator. As it receives trails from the Correlator, it
builds them into a list of trails for each trail number.
Periodically (typically on a 10 second interval), for each
trail list, the Acnet Formatter reformats and packs the data
into structures (arrays) that can be transmitted over Acnet
to any requestor. A header is prepended onto the data
structure and the structure is built into a documented
format.

While performing these collection and reformatting
tasks, the Acnet Formatter also creates several diagnostics
for each trail, such as number of completely filled vs.
unfilled trails, counts of the number of times a device is
missing (uncollected) from a trail, which is device is most
often missing, which device’s reading most often returns
with a timestamp outside of the sliding collection
window, and the total number of device readings with
such a bad arriving timestamp.

All the formatted trail data structures and the diagnostic
values are made available as Acnet device readings.

Database Interface
The Database Interface periodically reads the packaged

trail data from the Acnet Formatter and stores the
readings in a Postgress database. It computes several
averages and sums, for instance the sum of each intensity
device in a trail over a day. These computed values are
also written to database tables, so graphs and displays of
more commonly used values can be created more quickly,

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF061

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

839 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

without having to retrieve all the raw data and compute
everything at plotting time.

We have created a graphical interface into the database
to enable users to create useful plots of the data. The Java
program allows the user to apply multiple selection
criteria, including date, device name, summed vs. raw
data, and more. This and other Java classes enable us to
create daily or weekly beam summaries and statistics.

Figure 2 shows a sample plot of the type that can be

made with the database information using the Java
interface program. Figure 2 shows the daily summed
intensity for a variety of devices along the beam trail and
accelerator chain.

PROGRAMMING
The Correlator and Acnet Formatter are implemented in

Erlang in our Erlang-based ACSys front-end framework.
The Acnet Formatter is one of the frameworks “device

drivers”, with custom code handling the receipt of trail
messages from the correlator and the repackaging of that
data into Acnet-accessible structures. The Correlator is
implemented as a supporting process to that device driver,
being started by the driver and reporting to it. Data
collection is done using our standard Erlang-based data
collection client, and this project was the heaviest test of
that collection client software to date and suggested
several refinements of it.

The Database Interface is written in Java and uses our
standard Acnet libraries to read data from the beamtrail
collection front end. A Java OAC performs the
continuous job of reading the assembled trail data and
exporting it to the database. Other standalone Java classes
and programs provide a graphical user interface to the
database data and can create plots with many options
from the data.

Figure 2: A sample plot showing summed intensities for a variety of device locations.

SUMMARY
We have implemented a set of programs that enhance

Fermilab’s ability to analyse accelerator performance. We
collect beam intensity readings and sort them by the
different trail each beam pulse follows through the
accelerator and experimental target area chain. The
software is able to handle temporary outages by
individual reporting devices, and untangles overlapping
beam cycles. With the database of information collected,
we are able to produce summary plots and reports that
provide information about short and long term
performance of the accelerators.

ACKNOWLEDGEMENT
Operated by Fermi Research Alliance, LLC under

Contract No. De-AC02-07CH11359 with the United
States Department of Energy.

WEPGF061 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

840C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

