
MONITORING MIXED-LANGUAGE APPLICATIONS WITH
ELASTICSEARCH, LOGSTASH AND KIBANA (ELK)

A. De Dios Fuente, O. O. Andreassen, C. Charrondière, CERN, Geneva, Switzerland

Abstract
Application logging and system diagnostics is nothing

new. Ever since we had the first computers scientists and
engineers have been storing information about their
systems, making it easier to understand what is going on
and, in case of failures, what went wrong. Unfortunately
there are as many different standards as there are file
formats, storage types, locations, operating systems, etc.
Recent development in web technology and storage has
made it much simpler to gather all the different
information in one place and dynamically adapt the
display. With the introduction of Logstash with
Elasticsearch as a backend, we store, index and query
data, making it possible to display and manipulate data in
whatever form one wishes. With Kibana as a generic and
modern web interface on top, the information can be
adapted at will. In this paper we will show how we can
process almost any type of structured or unstructured data
source. We will also show how data can be visualised and
customised on a per user basis and how the system scales
when the data volume grows.

INTRODUCTION
At CERN, as in any other large organization, lots of

data are generated and stored at a rate that makes it
difficult for humans to analyse them. In addition, when
considering the many different file formats, storage types,
and physical locations, treating the data manually can
become an unfeasible and overwhelming task. Manual
treatment would go from data analysis to bug or error
tracking. Having a tool that helps engineers understand
the insights of the data stored, generate reports and gather
statistics from them in a faster and easier way, is often the
key to prevent future problems and where the challenge
lies.

Moreover, with any kind of system, the logfile is the
first place to look for clues when the system behaves in an
unexpected manner. In our case, we have a variety of
applications written in LabVIEW, C++ and Java, running
on the most popular operating systems (Linux, Windows
and OS X) and applications that make use of our
LabVIEW Rapid Application Development Environment
(RADE) [1], which has part of the services distributed
over multiple servers and which is accessible from more
than ~100 users at CERN. In such systems, most of the
logs have different or weak structures. This led us to
investigate how to unify all the different data formats and
sources, and how to store all the information in a common
place in order to have a tool that monitors and keeps track
of all the online data easily and effectively in real time.
However, since the needs of the users are different
according to the application in hands, the way of getting

statistics and reports should be customizable without web-
development knowledge or specialised skills.

According to the motivation explained above, a
conscientious study was made, in which several tools
were identified, studied and tested.

STUDY OF TOOLS
One of the first things to consider was the data format.
There is a large variety of sources; LabVIEW applications
running on CompactRIO and PXI targets, Apache Tomcat
servers, Java services, C++ applications and extensions,
where each of them have different formats and purposes.
In computing, syslog is a widely used standard for
message logging [2] so this was the starting point to
define the main format. In addition, the main
requirements for the desired system are listed below:

 Support multiple log formats but mainly syslog.
 Support different communications and network

protocols.
 Centralised data messages.
 Have a web-viewer to analyse the logs.
 Be able to get statistics of the stored data.
 Be fully compatible with Linux Environment.
 Be easy to use, install and configure.
 Be scalable if data grows over time.

Analysis of Logging Tools
Considering the advances in data mining and the fact

that the analysis of “Big Data” [3] is not a new field, we
decided to look for an already existing tool.

After searching and evaluating some promising tools
found in the market, Logstash and Fluentd [4] were
selected for a deeper study and test. Since these tools are
evolving and have been redesigned several times due to
their increasing popularity, some characteristics and
features might have changed after our initial test. The
versions used were Logstash 1.3, Fluentd 1.1,
Elasticsearch 0.90 and Kibana 3.

Logstash and Fluentd are aimed to unify and manage
data collection for better use and understanding. Both are
free, open source and based in plugin models to extend
functionality. The two of them can be combined with the
popular Elasticsearch as the backend data store and
Kibana as a front-end reporting tool to complete all the
requirements.

Logstash is based on inputs, filters, codecs and output
plugins where the inputs are the sources of the data, the
filters are processing actions on the data under certain
conditions, the codecs change the data representation and
finally the outputs are the destinations where the data is
sent. Fluentd has the same behaviour for the inputs and
outputs but internally all the data are converted to JSON

WEPGF041 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

786C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

(JavaScript Object Notation) [5] in order to give structure
to an unstructured log message.

As a general comparison (Table 1), the two projects
have similar features and capabilities; the most significant
difference is that Fluentd insists on simplicity, versatility
and robustness whereas Logstash focuses on flexibility
and interoperability.

Table 1: Comparison between Logstash and Fluentd

Name Logstash Fluentd

Inputs/Outputs Has ~30 inputs
and ~50
outputs.

By default has
~10 inputs and
outputs.

Filters Parse logs into
different
formats

Not possible

Platforms Any Java VM
compatible
platform

Not in Windows

Installation All embedded
in a unique jar

Need to install
modules
separately

JVM Needed Not needed

Data storage Meant to work
with
Elasticsearch

Works with
Elasticsearch,
MongoDB…

Initial Testing
As a proof of concept both were installed and

intensively tested to be sure about the amount of data they
can receive and how they perform.

The conceptual tests were performed on two SLC 6 x64
based machines. One machine was used for Logstash and
the other for Fluentd. The installation was really
straightforward; it took less than a day with the basic
configuration. Then, for Logstash, the following inputs
were included: ZeroMQ [6], log4j [7] and UDP. ZeroMQ
was used in the CERN middleware libraries for
distributed messaging, log4j was the common Java
logging utility and UPD was the internal transport
protocol used by syslog. For Fluentd, we included the
ZeroMQ and UDP inputs, but for Java logging we used its
own implementation of log4j: fluent-logger-java.

Therefore, small test examples were implemented in
C++ and Java using these protocols where the messages
were sent from a different machine to the Logstash and
fluentd instances. All machines were in the same network
with a Gigabit Ethernet connection. For these tests, we
sent 5000 messages per second to both instances and they
worked seamlessly for several weeks in a row.

Finally, since both tools are really promising for our
needs, we looked again into the rich collection of input
and output plugins. Only Logstash supports RabbitMQ
[8] (message broker software) and log4j, which are really
useful for our National Instruments components and the

Apache Server logs where our RADE Java libraries are
running. Adding the fact of having all embedded into one
JAR made it easier to install, so we selected Logstash as
our collector and management of the log data.

ELK STACK
Although Logstash is a separate project, it has been

built to work exceptionally well combined with
Elasticsearch and Kibana. Together, known as the ELK
stack, they become a powerful tool designed to search,
analyse, and visualise data, allowing to get insight in real
time [9].

ELK Architecture
The ELK stack is meant to be used in a distributed

system where each component has different functionality
and the usual architecture has five important components,
which can be customised according to your system:

 Remote Shipper: collects logs from different
machines and sends them to the central Logstash
instance.

 Broker: a temporary buffer between the shippers and
the central Logstash server. Typically, Redis is used
as a queue-cache server, but also messages brokers
can be used, such as RabbitMQ, ActiveMQ, etc.

 Indexer processes: they index and save the logs to
the data storage.

 Elasticsearch: the storage and search engine.
 Kibana: the web interface.

Figure 1: ELK Stack Architecture

Elasticsearch
Elasticsearch is based on Apache Lucene [10] that is

the most powerful full-text search library available as
open source and written completely in Java.

Moreover, it is a RESTful server so any action can be
performed using its REST API using JSON over HTTP
[11].

Elasticsearch provides an indexing service and a data
storage without the need of defining a database scheme,
but it is possible to provide one if needed.

It is meant for handling real time data that needs to be
processed and analysed in a rapid manner. Also it is
distributed and horizontally scalable which allows starting
small and easily add nodes into the cluster if the data
volume grows. The cluster consists of one or more nodes,
which are established by adding a cluster name to each

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF041

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

787 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

node. One node in the cluster is elected to be the master
node, which is in charge of managing the cluster changes.
The data are stored in an index and are composed of a
series of fields. Indexes are similar to a database and are
mapped shards that hold a slice of all the data in the
index. Shards can be either a primary shard or a replica
shard. A replica shard is a copy of a primary shard used to
provide redundant copies of the data to avoid loss of data
in case of failure of any of the nodes. The number of
primary shards in an index remains the same since its
creation time, but the number of replica shards can be
changed at any time [12].

Kibana
Kibana is the web interface embedded into

Elasticsearch that helps to understand large volumes of
data and rapidly detect patterns or irregularities in them. It
provides a flexible and easy way to create dashboards
thanks to the widget-based interfaces, which contains a
huge variety of charts, graphs or maps. Most of the data is
showed as time-series based.

The interface is simple, friendly and intuitive, there is
no need to have a web development background to start
using it. Since the data and the purposes are different per
user, each of them can customize a dashboard according
to his needs.

Using Logstash filters, one can create tags according to
certain criteria and then it is possible to search and
identify messages in Kibana.

In Figure 2, messages were indexed and tagged by
Logstash depending on the log message content, then they
were filtered with Kibana to visualise the statistics and
metrics.

Figure 2: Kibana Dashboard

INTEGRATION, REMARKS AND ISSUES
After the initial tests, we analysed the data structure of

the logs deeper and we decided to create in Logstash tags
per host name, application name, error code, error log
level and type of protocol used in order to identify
messages and get statistics easily.

Moreover, we developed a Logger tool in LabVIEW
where the messages are sent by UDP to the Logstash
instance. The implementation of the utility took less than
a day and it is included in the RADE framework where all
LabVIEW/RADE users can benefit from it. As a result of
this, it was possible to unify multiple log formats from
different applications and users and, in some cases, give
format to an unstructured data log.

In addition, the horizontal scalability feature that the
ELK system provides was really useful. After months of
use, we decided to add a new node, in order to avoid loss
of data in case of failure. For doing this, it was needed to
install a new instance of Elasticsearch in another
computer and just give the same cluster name in the
configuration file, Elasticsearch take care of the load
balancing.

Also, at a certain moment, it was necessary to ship
messages from CompactRIO at the Technical Network to
the General Purpose Network where the ELK stack is
installed. This was solved by adding a remote shipper, as
was already explained earlier.

So for the bug diagnostics inside the RADE framework,
especially for the Java services, it has been an important
and valuable tool. Until now, when a problem appeared,
we had to check hundreds of logs into several servers at
multiple locations, spending a lot of time trying to find
out where the error came from. Now, with the
introduction of the ELK stack, a simple query can be run
that will point to the problem instantly.

Although, the ELK stack offers many great features, it
also has its downsides:

 The lack of security is one of its biggest defects.
There is no access control to Kibana or
ElasticSearch, so just knowing the URL of the host
server, anyone with access to the machine can copy,
modify or delete the dashboard or, even worse, the
index directly from the database.

 Logstash has a limitation of its buffering capabilities,
so if the number of messages keeps increasing, the
internal buffer can fill up. In order to solve this, it is
necessary to add a broker instance to hold and queue
the events.

CONCLUSION AND FUTURE
IMPROVEMENTS

Thanks to the introduction of the ELK stack, all the log
messages have been unified into a common format and
the data storage is centralised. The management and
analysis of all these data has greatly improved, users have
created their own dashboard according to their needs.

The bug diagnostics has been improved a lot thanks to
the ELK stack; all the data logs are centralised in a single
application and errors can be identified easily.

The time the developers spent identifying bugs under
the RADE framework has been reduced.

One of the improvements we have in mind is to add an
access control to avoid interactions of one user’s

WEPGF041 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

788C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

dashboards with other users’ dashboards and also to add a
security layer on top of all the stored data.

We are also planning to add new graphical components
in Kibana and to extend it to be used in other websites
outside the ELK stack.

REFERENCES
[1] O. Ø. Andreassen et al. “The LabVIEW RADE

framework distributed architecture”, ICALEPCS
2011, Grenoble, France, (2011)

[2] Definition Syslog: http://en.wikipedia.org
[3] Big Data: http://en.wikipedia.org/wiki/Big_data
[4] Fluentd website: http://www.fluentd.org/
[5] JSON website: http://json.org/
[6] ZeroMQ website: http://zeromq.org/
[7] log4j website: http://logging.apache.org/log4j/2.x/
[8] RabbitMQ website: https://www.rabbitmq.com/
[9] ELK products definition:

https://www.elastic.co/products
[10] Lucene website: http://www.lucenetutorial.com/
[11] Elasticsearch website: https://www.elastic.co/product

s/elasticsearch
[12] C. Gormley, Z. Tong, “Elasticsearch: The Definitive

Guide”, (O’Reilly Media, Inc, 2015, 25-29)

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF041

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

789 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

